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Abstract In Doney (Bull Lond Math Soc 19(2):177–182, 1987), R. Doney iden-
tifies a striking factorization of the arc-sine law in terms of the suprema of two
independent stable processes of the same index by an elegant randomwalks approx-
imation. In this paper, we provide an alternative proof and a generalization of this
factorization based on the theory recently developed for the exponential functional
of Lévy processes. As a by-product, we provide some interesting distributional
properties for these variables and also some new examples of the factorization of
the arc-sine law.
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1 Introduction

Let Mρ = sup0≤t≤1Xt and M̂ρ = sup0≤t≤1−X̃t where X = (Xt )t≥0 and
X̃ = (X̃t )t≥0 are two independent copies of a stable process of index α ∈ (0, 2)
and positivity parameter ρ ∈ (0, 1). Doney [9, Theorem 3] proved the following
factorization of the arc-sine random variableAρ of parameter ρ

Mα
ρ

Mα
ρ + M̂α

ρ

(d)= Aρ (1.1)

where
(d)= stands for the identity in distribution, and the law of Aρ is absolutely

continuous with a density given by

sin(πρ)
π

xρ−1(1− x)−ρ, x ∈ (0, 1) .

The distributional identity (1.1) is remarkable because the law of the supremum
of a stable process is usually a very complicated object whereas the arc-sine law
has a simple distribution. In recent years, the law of Mρ has been the interest of
many researchers, see e.g. [11, 14, 15, 23, 25] where we can find series or Mellin-
Barnes integral representations for the density of the supremum of a stable process
valid for some set of parameters (α,ρ). We mention that Doney resorts to a limiting
procedure to derive the factorization (1.1) of the arc-sine law. More specifically,
his proof stems on a combination of an identity for each path of a random walk
in the domain of attraction of a stable law with the arc-sine theorem which can be
found in Spitzer [30]. We also mention that the arc-sine law appears surprisingly in
different contexts in probability theory and in particular in the study of functionals
of Brownian motion, see e.g. [8, 19, 22, 31].

The aim of this work is to provide an alternative proof and offer a generalization
of Doney’s factorization of the arc-sine law. The first key step relies on the well-
known fact by now that, through the so-called Lamperti mapping, one can relate the
law of the supremum of a stable process to the one of the exponential functional
of a specific Lévy process, namely the Lamperti-stable process. It is then natural to
wonder whether there are other factorizations of the arc-sine law given in terms of
exponential functionals of more general Lévy processes. This will be achieved by
resorting to the thorough study on the functional equation satisfied by the Mellin
transform of the exponential functional of Lévy processes carried out in Patie and
Savov [27].

Besides proving these identities in a more general framework, the problem of
identifying a factorization of the exponential functionals as a simple distribution
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is interesting on its own since we shall show, on the way, that the law of the
ratio of independent exponential functionals of some Lévy processes is the Beta
prime’s one which is known to belong to some remarkable sets of probability laws.
This new fact is also relevant as the exponential functional of Lévy processes has
attracted the attention of many researchers over the last two decades. The law of
this random variable plays an important role in the study of self-similar processes,
fragmentation and branching processes and is related to other theoretical problems
as for example the moment problem and spectral theory of some non-self-adjoint
semigroups, see [28]. Moreover it also plays an important role in more applied
domains as for example in mathematical finance for the evaluation of Asian options,
in actuarial sciences for random annuities, as well as in domains like astrophysics
and biology. We refer to the survey paper [5] for a more detailed account on some
of the mentioned fields. The remaining part of the paper is organized as follows. We
state our main factorization of the arc-sine law along with some consequences and
examples in the next section. The last section is devoted to the proofs.

2 The Arc-Sine Law and Exponential Functional of Lévy
Processes

Throughout this paper we denote by ξ = (ξt )t≥0 a possibly killed Lévy process
issued from 0 and defined on the probability space (%,F ,P). It means that ξ is
a real-valued stochastic process having independent and stationary increments and
possibly killed at the random time eq , which is independent of ξ and exponentially
distributed with parameter q ≥ 0, where we understand that e0 = +∞. We denote
by & its Lévy-Khintchine exponent, which, for any z ∈ iR, takes the form

logE
[
ezξ1

] = &(z) = az+ 1
2
σ 2z2 +

∫

R

(
ezy − 1− zyI{|y|<1}

)
((dy)− q

(2.1)

where a ∈ R, σ ≥ 0 and ( is a Radon measure on R satisfying the conditions∫
R(1 ∧ y2)((dy) < +∞ and(({0}) = 0. The law of ξ1 is infinitely divisible and
the one of ξ is uniquely characterized by the quadruplet (q, a, σ,(). An excellent
account on Lévy processes can be found in the monographs [4, 10, 16, 29]. Next,
we define the exponential functional associated to the Lévy process ξ by

I& =
∫ ∞

0
eξt dt =

∫ eq

0
eξt dt. (2.2)

The variable I& is well defined if either &(0) = −q < 0 or limt→+∞ ξt = −∞
a.s. This last condition is equivalent to Erickson’s integral tests involving the Lévy
measure( and the drift a, see Bertoin and Yor [5, Theorem 1]. With this remark in
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mind, we denote by N the set of Lévy Khintchine exponents of the form (2.1) for
which the exponential functional I& is well defined, i.e.

N =
{
& of the form (2.1); &(0) < 0 or lim

t→+∞
ξt = −∞ a.s.

}
. (2.3)

Note thatN is a subspace of the negative of continuous negative-definite functions,
as defined in [12]. Next, it is well-known that& ∈ N admits an analytical extension
(still denoted by &) to the strip C(0,β) = {z ∈ C; 0 < ℜ(z) < β} with 0 < β if
and only if

∣∣E
[
ezξ1

]∣∣ < ∞ for all z ∈ C(0,β). Note that the existence of exponential
moments for all z ∈ C(0,β) is equivalent to

∫

y>1
euy((dy) < ∞ for all u ∈ (0,β). (2.4)

Under this condition, the restriction of& on the real interval (0,β) is convex and the
condition limt→+∞ ξt = −∞ a.s. is equivalent to& ′(0+) < 0, see e.g. [5, Theorem
1 and Remark p.193]. We then define for any β > 0,

Nβ = {& ∈ N ; (2.4) holds} .

Next, for any & ∈ Nβ , let us denote

ρ = sup{u ∈ (0,β); &(u) = 0}

with the usual convention that sup{∅} = +∞ and, introducing the notation

(+ (y) =
∫ ∞

y
((dr)I{y>0},

we define

Nβ(ρ) =
{
& ∈ Nβ;ρ < ∞, y +→ eβy(+ (y) is non-increasing,∞ < lim

u↑0
u&(u+ β) ≤ 0

}
.

We point out that if & ∈ Nβ(ρ) and limu↑0 u&(u + β) exists then necessarily
limu↑0 u&(u + β) ≤ 0 as, by definition ρ < β, and & is convex increasing on
(ρ,β). Note also that for any & ∈ N with (+ ≡ 0, we always have 0 < ρ < ∞
and thus & ∈ Nβ (ρ) for all β > ρ. We also point out if |&(β)| < ∞, that is &
extends continuously to the line β + iR, then plainly limu↑0 u&(u + β) = 0. We
are now ready to state our main result.



On Doney’s Striking Factorization of the Arc-Sine Law 47

Theorem 2.1 Assume that & ∈ N1(ρ) with 0 < ρ < 1, then &̂1(z) = &1(−z) ∈
N1 with &̂1(1− ρ) = 0, where

&1(z) =
z

z+ 1
& (z + 1) , z ∈ iR,

and,

I&̂1

I&̂1
+ I&

(d)= Aρ and
I&

I&̂1
+ I&

(d)= A1−ρ (2.5)

where the variables I& and I&̂1
are taken independent.

We proceed by providing some consequences of this main result. We first derive
some interesting distributional properties for the ratio of independent exponential
functionals. To this end, we recall that a positive random variable is hyperbolically
completely monotone if its law is absolutely continuous with a probability density
f on (0,∞) which is such that the function h defined on (0,∞) by

h(w) = f (uv) f (u/v) , with w = v + v−1, (2.6)

is, for each fixed u > 0, completely monotone, i.e. (−1)n dn

dwn h(w) ≥ 0 on (0,∞)

for all integers n ≥ 0. This remarkable set of random variables was introduced
by Bondesson and in [6, Theorem 2], he shows that it is a subset of the class of
generalized gamma convolution. We recall that a positive random variable belongs
to this latter class if it is self-decomposable, and hence infinitely divisible, such
that its Lévy measure (, concentrated on R+, is such that

∫∞
0 (1 ∧ y)((dy) < ∞

and ((dy) = k(y)
y dy where k is completely monotone. We also say that a positive

random variable I is multiplicative infinitely divisible if log I is infinitely divisible.
It turns out that under some conditions the random variables I& is multiplicative
infinitely divisible, see [1, Theorem 1.5] when & is a Bernstein function and [27,
Theorem 4.7] in the general case.

Corollary 2.2 With the notation and assumptions of Theorem 2.1, the random

variables I&
I&̂1

and
I&̂1
I&

are hyperbolically completely monotone and multiplicative

infinitely divisible. Moreover, when ρ = 1
2 , then

I&
I&̂1

is self-reciprocal, i.e. it has the

same law than
I&̂1
I&

, and it has the law of C2 where C is a standard Cauchy variable.

Another consequence of Theorem 2.1 is the following.

Corollary 2.3 Doney’s identity (1.1) holds.

We close this section by describing another example illustrating our main factoriza-
tion of the arc-sine law with some classical variables and refer the interested reader
to the thesis [2] for the description of additional examples. Let us consider first S(α)
a positive α-stable variable, with 0 < α < 1, and denote by S−α

γ (α) its γ -length-
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biased random variable, γ > 0, that is for any bounded measurable function g on
R+, one has

E
[
g(S−α

γ (α))
]
= E

[
S−αγ (α)g(S−α(α))

]

e
[
S−αγ (α)

]

where we recall that E
[
S−αγ (α)

]
< ∞, see e.g. [24, Section 3(3)]. We also denote

by Ga a gamma variable of parameter a > 0.

Corollary 2.4 Let 0 < α,ρ < 1, then we have the following factorization of the
arc-sine law

G−α
α(1−ρ)

G−1
1−ρS

−α
ρ (α) + G−α

α(1−ρ)

(d)= Aρ

where the three variables Gα(1−ρ), Sρ(α) and G1−ρ are taken independent.

3 Proofs

The proof of Theorem 2.1 is split into several intermediate results which might be
of independent interests. First, let (Tβ)β∈R be the group of transformations defined,
for a function f on the complex plane, by

Tβf (z) =
z

z + β
f (z+ β) . (3.1)

In what follows, which is a slight extension of [26, Proposition 2.1], we show
that under mild conditions, this family of transformations enables to identify an
invariance property of the subset of Lévy-Khintchine exponents. Note that this
lemma contains the first claim of Theorem 2.1.

Lemma 3.1 Let β+ > 0 and & be of the form (2.1) such that for any β ∈
(0,β+), |&(β)| < ∞. Then, for any β ∈ (0,β+] such that

y +→ eβy(+ (y) is non-increasing on R+ and −∞ < qβ = lim
u↑0

Tβ& (u) ≤ 0,

we have that Tβ& is also of the form (2.1). More specifically, its killing rate is −qβ ,
its Gaussian coefficient is σ and its Lévy measure takes the form

(β (dy) = eβy
(
( (dy)+ βdy

(
(( (−∞, y)+ q)I{y<0} −(+ (y)

))
, y ∈ R.

(3.2)
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Finally, if, in addition, & ∈ Nβ (ρ) with β ∈ (ρ,β+], then &̂β = T̂β& ∈ Nβ with
&̂β(β − ρ) = 0.

Remark 3.2 Note that when |&(β)| < ∞ then immediately qβ = 0. Moreover, the
situation |&(β+)| = ∞ is allowed if 0 is a removable singularity for Tβ+& with
qβ+ = Tβ+&(0) ≤ 0.

Proof For any β ∈ (0,β+), since in this case plainly qβ = 0, the claim is given
in [26, Proposition 2.1] and thus it remains to prove it only for β = β+. Note also
that the expression of the characteristics of Tβ+& follows from this aforementioned
result and we now show that it is indeed a characteristic exponent of a Lévy process.
To this end, we recall a few properties of the set of all negative definite functions
N(R) and the set of all continuous negative definite functions denoted by CN(R)
and refer to the monograph [12] for an excellent account on these sets of functions.
A function f : R −→ C is an element in N(R) if and only if the following
conditions are fulfilled f (0) ≥ 0, f (z) = f (−z), and for any k ∈ N and any
choice of values z1, · · · , zk ∈ R and complex numbers c1, · · · , ck

k∑

j=1

cj = 0 implies that
k∑

j,l=1

f (zj − zl)cj cl ≤ 0. (3.3)

It is easy to verify that −&(−z) ∈ CN(R), z ∈ iR and it is also well-known that
any element of CN(R) can be written as the negative of a characteristic function
of a Lévy process. Now, we have, for any β ∈ (0,β+), Tβ& (z), z ∈ iR, is the
characteristic exponent of a conservative (qβ = 0) Lévy process. Denote, for u ∈
(−β+, 0)

Tβ+&(u) = lim
β→β+

Tβ&(u), (3.4)

and set Tβ+&(0) := limu↑0 Tβ+& (u) = qβ which is a non-negative constant by
assumption. Then, let

+(z) =
{−Tβ+&(z) if z ̸= 0
0 if z = 0.

Then + is an element of N(R) since we know from [12, Lemma 3.6.7, p.123] that
the set N(R) is a convex cone which is closed under pointwise convergence. Let
further

+̃(z) =
{−qβ ++(z) if z ̸= 0
−qβ if z = 0,
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where we recall that qβ ≤ 0. For any k ∈ N and any choice of values z1, · · · , zk ∈ R
and complex numbers c1, · · · , ck with

∑k
j=1 cj = 0, since + ∈ N(R) and −qβ ∈

N(R), we have

k∑

j,l=1

+̃(zj − zl)cj cl =
k∑

j,l=1;zj ̸=zl

+(zj − zl)cj cl − qβ

k∑

j,l=1;zj ̸=zl

cj cl − qβ

k∑

j,l=1;zj=zl

cj cl

=
k∑

j,l=1

+(zj − zl)cj cl − qβ

k∑

j,l=1

cj cl ≤
k∑

j,l=1

+(zj − zl)cj cl ≤ 0.

Hence +̃ ∈ N(R) and by continuity, Tβ+& is the characteristic exponent of a
possibly killed Lévy process. Next, let us assume that, in addition, & ∈ Nβ(ρ)

with β ∈ (ρ,β+], then writing &̂β = T̂β&, &̂β is the characteristic exponent of
the dual Lévy process associated to Tβ& and, as &̂β(z) = z

z−β&(−z + β), we
have that &̂β(z) is analytical on the strip C(0,β) and &̂β(β − ρ) = 0. Moreover,
since for u ∈ (0,β), &̂ ′

β(u) = − u
u−β&

′(−u + β) − β

(u−β)2&(−u + β), we get, if

β ∈ (ρ,β+), that &̂ ′
β(0) = −&(β)

β < 0 as β > ρ, either &(0) < 0 or & ′(0+) < 0
and& is convex on (0,β). Hence, in this case, &̂β ∈ Nβ(β−ρ). Finally, if qβ+ < 0
then clearly &̂β+ ∈ Nβ+(β − ρ) whereas if qβ+ = 0 we complete the proof by
recalling that &̂β+(β+ − ρ) = 0 with β+ − ρ > 0 and the convexity of &̂β . ⊓0
Next, we denote by MI the Mellin transform of a random variable I, that is, for
z ∈ C,

MI(z) = E[Iz−1]

and, mention that the mapping t +→ MI(it + 1) for t real is a positive-definite
function. We proceed by recalling a few basic facts about the Beta prime random
variable, which we denote by Pa,b, a, b > 0, that will be useful in the sequel of the
proof. It can be defined via the identity

Pa,b
(d)= Gb

Ga
(3.5)

where the two variables are gamma variables of parameter b and a respectively, are
considered independent. It is well-known that the law of Ga is absolutely continuous
with the following density

1
,(a)

xa−1e−x, x > 0.
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Pa,b is also a positive variable whose law is absolutely continuous with a density
given by

1
B(a, b)

xb−1 (1+ x)−a−b , x > 0,

where B(a, b) = ,(a),(b)
,(a+b) is the Beta function. The Mellin transform of Pa,b is

given by

E
[
Pz
a,b

]
= ,(a − z),(b + z)

,(a),(b)
, −b < ℜ(z) < a. (3.6)

From (3.6) it is easy to see thatPa,b admits moments of order u for any u ∈ (−b, a).
In particular Pa,b has infinite mean whenever a ≤ 1. We refer to [13] for a nice
exposition on these variables. When ρ = a = 1− b, we write simply Pρ = Pρ,1−ρ
which is linked to the generalized arc-sine lawAρ of order ρ in the following way

(1+ Pρ)
−1 (d)= Aρ . (3.7)

Simple algebra yields, from the identity (1.1), the following factorization

M̂α
ρ

Mα
ρ

(d)= Pρ . (3.8)

Inspired by this reasoning, we shall prove the factorization of the variable Pρ in
terms of exponential functionals of Lévy processes. To this end, we shall need the
following characterizations of the Mellin transform of the Beta prime variable Pρ .

Lemma 3.3 For any 0 < ρ < 1, we have

MPρ
(z + 1) = ,(z + 1− ρ)

,(1− ρ)

,(−z+ ρ)

,(ρ)
(3.9)

which defines an analytical function on the strip C(ρ−1,ρ) with simple poles at the
edges of its domain of analyticity, that is at the points ρ and ρ − 1. Moreover, it is
the unique positive-definite function solution to the recurrence equation, for z ∈ C,

MPρ
(z + 1) = −MPρ

(z), MPρ
(1) = 1. (3.10)

Proof First, from the definition (3.5) of Pρ , one has, for any 0 < ρ < 1 and b > 0,

MPρ,b
(z+ 1) = MGb

(z+ 1)MGρ (−z+ 1) = ,(z + b)

,(b)

,(−z + ρ)

,(ρ)
, (3.11)
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and thus, as Pρ = Pρ,1−ρ ,

MPρ
(z+ 1) = ,(z + 1− ρ)

,(1− ρ)

,(−z + ρ)

,(ρ)
. (3.12)

As a by-product of classical properties of the gamma function, one gets that z +→
MPρ

(z+ 1) defines an analytical function on the strip C(ρ−1,ρ) and which extends
as a meromorphic function on C with simple poles at the points ρ+n and ρ−1−n,
n ∈ N. Then, using the recurrence relation of the gamma function ,(z + 1) =
z,(z), z ∈ C, we deduce that, for any z ∈ C(ρ−1,ρ),

MPρ
(z + 1) = z− ρ

−z+ ρ

,(z − ρ)

,(1− ρ)

,(−z + 1+ ρ)

,(ρ)
= −MPρ

(z), (3.13)

which is easily seen to be valid, in fact, for all z ∈ C. To prove the uniqueness, one
notes that any solution of (3.10) can be written as the productMPρ

f where f is a
periodic function with period 1 and f (1) = 1. However, since the Stirling’s formula
yields that for any a ∈ R fixed,

lim
|b|→∞

|,(a + ib)||b|−a+ 1
2 e|b|

π
2 = Ca (3.14)

where Ca > 0, see e.g. [18], one gets, from (3.13), that for large |b|,

|MPρ
(1+ i|b|)| ∼ Cρ |b|−

1
2 e−|b|π .

As the Mellin transform of a random variable is bounded on the line 1+ iR, one has
necessarily that |f (z)| ≤ e(|b|+ϵ)π for any ϵ > 0 and some C > 0. An application
of Carlson’s theorem on the growth of periodic functions, see [20, p.96, (36)], gives
that f is a constant which completes the proof. ⊓0

We state the following result which is proved in [27] regarding the recurrence
equation solved by the Mellin transform of the exponential functional I& for
a general Lévy process. Note that the exponential functional is defined in the
aforementioned paper with ξ̂ = −ξ , that is for &̂(−z) = &(z).

Lemma 3.4 ([27], Theorem 2.4.) For any & ∈ N , MI& is the unique positive-
definite function solution to the functional equation

MI& (z+ 1) = −z

&(z)
MI& (z), MI& (1) = 1, (3.15)

which is valid (at least) on the dashed line Zc
0(&)\{0}, where we set Z0(&) = {z ∈

iR; &(z) = 0}. If & ∈ N1(ρ), 0 < ρ < 1, the validity of the recurrence equation
(3.15) extends to C(0,2) ∪ Zc

0(&) ∪ Zc
0 (&(.+ 1)) andMI& (z + 1) is analytical on

the strip C(−1,ρ) and meromorphic on C(−1,1) with ρ as unique simple pole.
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We mention that in [27, Theorem 2.1], an explicit representation of the solution
on a strip of the functional equation (3.15) is provided in terms of the co-called
Bernstein-gamma functions. This representation turns out to be very useful to
provide substantial distributional properties, such as a Wiener-Hopf factorization,
smoothness, small and large asymptotic behaviors, of the exponential functional of
any Lévy processes, see Section 2 of the aforementioned paper.

We are now ready to complete the proof of Theorem 2.1. Let& ∈ N1(ρ) and &̃ ∈
N and define the random variable I = I&

I&̃
, where we assumed that the exponential

functionals I& and I&̃ are independent variables. Then, plainly

MI(z+ 1) = MI& (z+ 1)MI&̃ (−z+ 1) (3.16)

and, Lemma 3.4 yields, after a shift by 1, and with MI(1) = 1, that

MI(z+ 2) = −z− 1
&(z+ 1)

&̃(−z)

z
MI(z + 1),

for (at least) any z on the dashed line Zc
0(&(. + 1) ∩ Zc

0(&̃) \ {0, 1}. Therefore, if
one chooses &̃ of the form

&̃(−z) = z+ 1
z

&(z+ 1),

that is &̃(−z) = T1&(z) or &̃(z) = T̂1&(z) = &̂1(z), one gets that &̂1 ∈ N1(1−ρ)

and thus according to Lemma 3.4,MI&̂1
(−z+ 1) is analytical on the strip C(ρ−1,1)

with 1−ρ as a simple pole. Then we obtain, from (3.16), thatMI(z+1) is analytical
on the strip C(ρ−1,ρ) with 1 − ρ and ρ as simple poles and it is solution to the
recurrence equation

MI(z+ 1) = −MI(z).

Since plainly MI(it + 1) is a positive-definite function we conclude by the
uniqueness argument given in Lemma 3.3 that

I&
I&̂1

(d)= Pρ . (3.17)

Invoking the identity (3.7), one obtains the first identity in (2.5). To get the second

one, one deduces easily, from (3.17) and (3.5), that
I&̂1
I&

has the same law as P1−ρ ,
and, by means of (3.7) again completes the proof of the Theorem.
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3.1 Proof of Corollary 2.2

First, from (3.17), we deduce easily that
I&̂1
I&

has the same law as P1−ρ . The fact that
the density of the variable P1−ρ is hyperbolic completely monotone was proved in
[6]. Moreover, Berg [3] showed that logGa is infinitely divisible for any a > 0,
we conclude the proof by recalling that the set of infinitely divisible variables
is closed by linear combination of independent variables. Finally, the last claim
follows readily from the definition of Pρ and the connection with the standard
Cauchy variable, which was observed by Pitman and Yor in [21].

3.2 Proof of Corollary 2.3

In order to prove the identity (1.1), we first recall the connection between the law
of the maximum of a stable process and the exponential functional of a specific
Lévy process, usually referred to as the Lamperti-stable process. This link has been
established through the so-called Lamperti transform and we refer to [7, 15] and
[17, Section 2.2] for more details. We proceed by providing the Lévy-Khintchine
exponent &α,ρ of the Lamperti-stable process of parameters (α,ρ),α ∈ (0, 2) and
ρ ∈ (0, 1), which is given by

&α,ρ(z) = − ,(1 + αz)

,(1 − αρ + αz)

,(α − αz)

,(αρ − αz)
, z ∈ C(− 1

α ,1)
, (3.18)

see [17, Theorem 2.3] where we consider here the exponent of αξ∗ in the notation
of that paper. The following identity in law between the suprema of stable processes
and the exponential functional of Lévy processes can be found, for example, in [15,
p. 133],

M−α
ρ

(d)= I&α,ρ (3.19)

where we recall that Mρ = sup0≤t≤1Xt andX = (Xt )t≥0 is an α stable process with
positivity parameter ρ. Next, observe that &α,ρ(ρ) = 0 and using the recurrence
relation of the gamma function, easy algebra yields

z

z+ 1
&α,ρ(z + 1) = − z

z+ 1
,(1 + α + αz)

,(1 + α(1 − ρ)+ αz)

,(−αz)
,(−α(1 − ρ)− αz)

= − ,(α + αz)

,(α(1 − ρ)+ αz)

,(1 − αz)

,(1 − α(1 − ρ)− αz)
.

Then, we get that limu→0
u

u+1&α,ρ(u+1) = − ,(α)
,(α(1−ρ))

1
,(1−α(1−ρ)) ≤ 0 as always

α(1−ρ) ≤ 1.We could easily check from the form (3.18) of&α,ρ and the expression
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of its Lévy measure given in [15] that y +→ ey(+ (y) is non-decreasing on R+.
Instead, we simply observe from the computation above that

&̂1(z) = T1&α,ρ(−z) = − ,(α − αz)

,(α(1− ρ)− αz)

,(1+ αz)

,(1− α(1 − ρ)+ αz)
= &α,1−ρ(z),

which is the characteristic exponent of the Lamperti-stable process with parameter
(α, 1− ρ). Hence, similarly to (3.19), we have the following identity in law

M̂−α
1

(d)= I&̂1
,

which by an application of Theorem 2.1 completes the proof.

3.3 Proof of Corollary 2.4

Let us now consider, for any α ∈ (0, 1),

&̂α(z) =
,(1 + α − αz)

α,(−αz) , z ∈ C(−∞,1+ 1
α )
.

In [24, Section 3.1], it is shown that &̂α is the Lévy-Khintchine exponent of a
spectrally positive Lévy process with a negative mean and that I&̂α

is a positive
self-decomposable variable with

I&̂α

(d)= e−α .

In other words, I&α has the Fréchet distribution of parameter ρ = 1
α > 1. Observe

that &̂α(ρ) = 0 and thus &̂α does not satisfy the hypothesis of Theorem 2.1.
However, in [24, Section 3.1] it is also shown that, up to a positive multiplicative
constant, the tail of the Lévy measure of &̂α is given by (α(y) = e−(α+1)y/α(1 −
e−y/α)−α−1, y > 0, and thus plainly the mapping eβy(α(y) is non-decreasing on
R+ for any β ≤ 1

α + 1. Then, Lemma 3.3 gives, for any ρ = β − 1
α ≤ 1, that

&̂α,ρ(z) = Tρ+ 1
α
&̂α(z) =

z

z + ρ + 1
α

,(α − αρ − αz)

α,(−1 − αρ − αz)
= −z

,(α − αρ − αz)

,(−αρ − αz)

is, since limu→0 &̂α,1(u) = limu→0
,(1−αu)

α,(−α−αu) = − 1
,(1−α) < 0, the characteristic

exponent of a Lévy process, as well as, by duality,

&α,ρ(z) = z
,(α − αρ + αz)

,(−αρ + αz)
.
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Note that, if 0 < ρ < 1 then &α,ρ(ρ) = 0 and we deduce by convexity and since
&α,ρ(0) = 0 that & ′

α,ρ(0
+) < 0. Hence&α,ρ ∈ N1(ρ). Using Lemma 3.4, one gets

that

MI&α,ρ (z + 1) = −,(α − αρ + αz)

,(−αρ + αz)
MI&α,ρ (z), MI&α,ρ (1) = 1. (3.20)

As mentioned earlier, [27, Theorem 2.1] provides the solution of this functional
equation which is derived as follows. First we recall that the analytical Wiener-Hopf
factorization of &α,ρ is given by

&α,ρ(z) = −(−z+ ρ)φρ(z)

where φρ(z) = αz,(α−αρ+αz),(1−αρ+αz) is a Bernstein function, see [10]. Then, the solution
of (3.20) takes the form

MI&α,ρ (z+ 1) = ,(z + 1)
Wφρ (z+ 1)

,(ρ − z),

where Wφρ (z + 1) = φρ(z)Wφρ (z), Wφρ (1) = 1. To solve this latter recurrence
equation, we note that φρ(z) = α z

z−ρ
,(α(z+1−ρ))
,(α(z−ρ)) , then easy algebra and the

uniqueness argument used in the proof of Lemma 3.3 yield that Wφρ (z + 1) =
αz ,(1−ρ),(z+1),(α(z+1−ρ))

,(z+1−ρ),(α(1−ρ)) and thus

MI&α,ρ (z+ 1) = α−z ,(z + 1− ρ),(α(1 − ρ))

,(1 − ρ),(z + 1),(α(z + 1− ρ))
,(z + 1),(ρ − z)

= α−z ,(z + 1− ρ))

,(α(z + 1− ρ))

,(α(1 − ρ))

,(1− ρ)
,(ρ − z).

Next, recalling that Sγ (α) is the γ -length biased variable of a positive α-stable
random variable, we observe, from [24, Section 3(3)] that

E
[
S−αz
1−ρ (α)

]
= E

[
S−α(1−ρ+z)(α)

]

E
[
S−α(1−ρ)(α)

] = ,(z + 1− ρ))

,(α(z + 1− ρ))

,(α(1 − ρ))

,(1 − ρ)
.

Thus, by Mellin transform identification, we get that

I&α,ρ

(d)= α−1S−α
1−ρ(α)× G−1

1−ρ
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where the variables on the right-hand side are taken independent. Next, we have,
writing simply &1 = T1&α,ρ ,

T1&α,ρ(z) = z
,(α(2 − ρ + z))

,(α(1 − ρ + z))

which yields

MI&̂1
(z+ 1) = ,(α(1 − ρ − z))

,(α(2 − ρ − z))
MI&̂1

(z), M&̂1
(1) = 1.

It is not difficult to check thatMI&̂1
(z+1) = ,(α(1−ρ−z)) is the unique positive-

definite solution of this equation. Invoking Theorem 2.1 completes the proof.
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