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Abstract
Let 𝑋 be a standard Markov process. We prove that a space inversion property of 𝑋

implies the existence of a Kelvin transform of 𝑋-harmonic, excessive and operator-

harmonic functions and that the inversion property is inherited by Doob ℎ-transforms.

We determine new classes of processes having space inversion properties amongst

transient processes satisfying the time inversion property. For these processes, some

explicit inversions, which are often not the spherical ones, and excessive functions

are given explicitly. We treat in details the examples of free scaled power Bessel

processes, non-colliding Bessel particles, Wishart processes, Gaussian Ensemble and

Dyson Brownian Motion.
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1 INTRODUCTION

The following space inversion property of a Brownian Motion (𝐵𝑡, 𝑡 ≥ 0) in ℝ𝑛 is well known [41,45]. Let 𝐼𝑠𝑝ℎ be the spherical
inversion 𝐼𝑠𝑝ℎ(𝑥) = 𝑥∕‖𝑥‖2 on ℝ𝑛 ⧵ {0} and ℎ(𝑥) = ‖𝑥‖2−𝑛, 𝑛 ≥ 1. Then

(
𝐼𝑠𝑝ℎ
(
𝐵𝛾𝑡

)
, 𝑡 ≥ 0

) (𝑑)
=
(
𝐵ℎ
𝑡
, 𝑡 ≥ 0

)
,

where
(𝑑)
= stands for equality in distribution, 𝐵ℎ is the Doob ℎ-transform of 𝐵 with the function ℎ and the time change 𝛾𝑡 is

the inverse of the additive functional 𝐴𝑡 = ∫ 𝑡0 ‖𝑋𝑠‖−4 d𝑠. In case 𝑛 = 1, 𝐵 is a reducible process. Thus, the state space can be
reduced to either the positive or negative half-line and 𝐵 killed when it hits zero, usually denoted by 𝐵0, is used instead of 𝐵.

In [11], such an inversion property was shown for isotropic (also called “rotationally invariant” or “symmetric”) 𝛼-stable
processes on ℝ𝑛, 0 < 𝛼 ≤ 2, also with 𝐼𝑠𝑝ℎ(𝑥) and with the excessive function ℎ(𝑥) = ‖𝑥‖𝛼−𝑛. The time change 𝛾𝑡 is then the

inverse function of𝐴𝑡 = ∫ 𝑡0 ‖𝑋𝑠‖−2𝛼 d𝑠. In the pointwise recurrent case 𝛼 > 𝑛 = 1 one must consider the process𝑋0
𝑡

killed at 0.
In the recent papers [2,3,34], inversions involving dual processes were studied for diffusions on ℝ and for self-similar Markov
processes on ℝ𝑛, 𝑛 ≥ 1.

The main motivation and objective of this paper are to find new classes of Markov processes having space inversion properties
and to study the existence of a related Kelvin transform of 𝑋-harmonic functions.

In this work,
(
(𝑋𝑡, 𝑡 ≥ 0); (ℙ𝑥)𝑥∈𝐸

)
,𝑋 for short, is a standard Markov process with a state space 𝐸, where 𝐸 is the one point

Alexandroff compactification of an unbounded locally compact subset of ℝ𝑛. Let 𝐼 ∶ 𝐸 → 𝐸 be a smooth involution and let
𝑓 be 𝑋-harmonic. One cannot expect that the function 𝑓 ◦ 𝐼 is again 𝑋-harmonic. However, in the case of the Brownian
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Motion, it is well known, see for instance [4], that if 𝑓 is a twice differentiable function on ℝ𝑛 ⧵ {0} and Δ𝑓 =0 then
Δ
(‖𝑥‖2−𝑛𝑓(𝐼𝑠𝑝ℎ(𝑥)))=0. The map

𝑓 → 𝐾𝑓 (𝑥) = ‖𝑥‖2−𝑛𝑓(𝐼𝑠𝑝ℎ(𝑥))
is the classical Kelvin transform of a harmonic function 𝑓 on ℝ𝑛 ⧵ {0}; this was obtained by W. Thomson (Lord Kelvin) in [44].

In the isotropic stable case, M. Riesz noticed [42] that if 𝐾𝛼𝑓 (𝑥) = ‖𝑥‖𝛼−𝑛𝑓(𝐼𝑠𝑝ℎ(𝑥)), and 𝑈𝛼(𝜇) is the Riesz potential of a
measure 𝜇 then 𝐾𝛼(𝑈𝛼(𝜇)) is 𝛼-harmonic. This observation was extended in [9–11] by proving that 𝐾𝛼 transforms 𝛼-harmonic
functions into 𝛼-harmonic functions. Analogous results were proven for Dunkl Laplacian in [31], see Section 2.5 for more details
in the stable and Dunkl cases.

In harmonic analysis, the interest in Kelvin transform comes from the fact that it reduces potential-theoretic problems relating
to the point at infinity for unbounded domains to those relating to the point 0 for bounded domains, see for instance the examples
in [4] where this is applied to solving the Dirichlet problem for the exterior of the unit ball and to obtain a reflection principle
for harmonic functions.

Thus, a natural question is whether for other processes𝑋, involutions 𝐼 and𝑋-harmonic functions 𝑓 one may “improve” the
function 𝑓 ◦ 𝐼 by multiplying it by an 𝑋-harmonic function 𝑘 (the same for all functions 𝑓 ), such that the product

𝑓 (𝑥) ∶= 𝑘(𝑥)𝑓 (𝐼(𝑥))
is 𝑋-harmonic. The transform 𝑓 will be then called Kelvin transform of 𝑋-harmonic functions.

An important result of our paper states that a Kelvin transform of 𝑋-harmonic functions exists for any process satisfying
a space inversion property. Thus a Kelvin transform of 𝑋-harmonic functions exists for a much larger class of processes than
isotropic 𝛼-stable processes, 𝛼 ∈ (0, 2], and Dunkl processes. Moreover, we prove that the Kelvin transform also preserves
excessiveness.

Throughout this paper, 𝑋-harmonic functions are considered, except for Section 2.9, where Kelvin transform's existence is
proven for operator-harmonic functions, that is for functions harmonic with respect to the extended generator of 𝑋 and the
Dynkin operator of 𝑋.

Many other important facts for processes with inversion property are proved, for instance, that the inversion property is
preserved by the Doob transform and by bijections. In particular, if a process 𝑋 has the inversion property, then so have the
processes 𝑋ℎ and 𝐼(𝑋), where ℎ and 𝐼 are as in Definition 2.1 of Section 2.3 below.

New classes of processes having space inversion properties are determined. We show that this is true for transient processes
with absolutely continuous semigroups that can be inverted in time. Recall that a homogeneous Markov process𝑋 is said to have
the time inversion property (t.i.p. for short) of degree 𝛼 > 0, if the process

((
𝑡𝛼𝑋1∕𝑡, 𝑡 ≥ 0

)
, (ℙ𝑥)𝑥∈𝐸

)
is homogeneous Markov.

The processes with t.i.p. were intensely studied by Gallardo and Yor [29] and Lawi [35]. For transient processes with t.i.p. we
construct appropriate space inversions and Kelvin transforms. A remarkable feature of this study is that it gives as a by-product
the construction of new excessive functions for processes with t.i.p.

In Section 4 we present applications of our results to some classes of stochastic processes. Historically, the first examples
of processes satisfying the inversion property are Brownian Motion and stable processes. Our paper shows that there are a lot
of different examples. Dunkl processes (see Section 4.6) as well as other regular processes with t.i.p., e.g. Wishart processes,
and all 1-dimensional diffusions have the inversion property (see [2]). Note also that we do not restrict our considerations to
self-similar processes, see Section 2.10. In Section 4.7, inversion properties for the hyperbolic Bessel process and the hyperbolic
Brownian motion (see e.g. [14,40,46] and the references therein) are discussed.

Here we work with the setting commonly used in modern stochastic potential theory, which is provided by the classical
textbooks [8,22] and used in the recent monograph [12]. In particular, we use their definitions of harmonic (and superharmonic)
functions and Doob ℎ-transforms, which are more widely known. It would be interesting to extend the results of our paper to
the setting introduced and used in [20,38], and, more recently, in [6,7].

2 INVERSION PROPERTY AND KELVIN TRANSFORM OF 𝑿-HARMONIC
FUNCTIONS

2.1 State space for a process with inversion property
M. Yor considered in [45] the Brownian motion on ℝ𝑛 ∪ {∞}, where ∞ is a point at infinity and 𝑛 ≥ 3. He was motivated by
the work of L. Schwartz [43] who showed that the 𝑛-dimensional Brownian motion (𝐵𝑡, 𝑡 ≥ 0) on ℝ𝑛 ∪ {∞} is a semimartingale
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until time 𝑡 = +∞. Furthermore, the Brownian motion indexed by [0,∞] looks like a bridge between the initial state 𝐵0 and
the ∞ state. Observe now that we can write ℝ𝑛 ∪ {∞} = {ℝ𝑛∖{0}} ∪ {0,∞}. Then 𝑆 = {ℝ𝑛∖{0}} ∪ {0} is a locally compact
space, where 0 is an isolated cemetery point. This makes sense from the point of view of involutions because we can extend the
spherical inversion on ℝ𝑛∖{0}, by setting 𝐼𝑠𝑝ℎ(0) = ∞ and 𝐼𝑠𝑝ℎ(∞) = 0, to define an involution of ℝ𝑛 ∪ {∞}.

Following this basic case, we are now ready to fix the mathematical setting of this paper. Let 𝐸 be the Alexandroff one
point compactification of an unbounded locally compact space 𝑆 ⊂ ℝ𝑛. Without loss of generality, we assume that 0 ∈ 𝑆. 𝐸 is
endowed with its topological Borel 𝜎-field.

We assume that 𝑋 is a standard process, we refer to Section I.9 and Chapter V of [8] for an account on such processes.
That is 𝑋 is a strong Markov process with state space 𝐸. The process 𝑋 is defined on some complete filtered probability space(
Ω, , (𝑡)𝑡≥0, (ℙ𝑥)𝑥∈𝐸), where ℙ𝑥(𝑋0 = 𝑥) = 1, for all 𝑥 ∈ 𝐸. The paths of 𝑋 are assumed to be right continuous on [0,∞),

with left limits, and are quasi-left continuous on [0, 𝜁 ), where 𝜁 = inf
{
𝑠 > 0 ∶ 𝑋𝑠 ∉ �̊�∖{0}

}
is the lifetime of 𝑋, �̊� being the

interior of 𝑆. Thus 𝑋 is absorbed at 𝜕𝑆 ∪ {0,∞} and it is sent to 0 whenever 𝑋 leaves �̊�∖{0} through 𝜕𝑆 ∪ {0}, and to ∞
otherwise. We furthermore assume that 𝑋 is irreducible, on 𝐸, in the sense that, starting from anywhere in �̊�∖{0}, the process
can reach with positive probability any nonempty open subset of 𝐸. This is a multidimensional generalization of the situation
considered in [2], where the authors constructed the dual of a one dimensional regular diffusion living on a compact interval
[𝑙, 𝑟] and killed upon exiting the interval.

Occasionally (Lemma 2.8, Corollary 2.9, Proposition 2.14, Section 3), we will additionally assume that the semigroup
𝑝𝑡(𝑥, 𝑑𝑦) is absolutely continuous with respect to the Lebesgue measure on 𝐸 and write 𝑝𝑡(𝑥, 𝑑𝑦) = 𝑝𝑡(𝑥, 𝑦)𝑑𝑦. Then we will
briefly say that 𝑋 is absolutely continuous.

2.2 Excessive and invariant functions and Doob 𝒉-transform
In this paper, an important role is played by Doob ℎ-transform, which is defined for an excessive function ℎ. Recall that a Borel
function ℎ on𝐸 is called excessive if𝔼𝑥 ℎ(𝑋𝑡) ≤ ℎ(𝑥) for all 𝑥 and 𝑡 and lim𝑡→0+ 𝔼𝑥 ℎ(𝑋𝑡) = ℎ(𝑥) for all 𝑥. An excessive function
is said to be invariant if 𝔼𝑥 ℎ(𝑋𝑡) = ℎ(𝑥) for all 𝑥 and 𝑡. Let 𝐷 ⊂ 𝐸 be an open set. A Borel function ℎ on 𝐸 is called excessive
(invariant) on 𝐷 if it is excessive (invariant) for the process 𝑋 killed when it exits 𝐷.

Let ℎ be an excessive function and set 𝐸ℎ = {𝑥 ∶ 0 < ℎ(𝑥) < ∞}. Following [19], we can define the Doob ℎ-transform
(
𝑋ℎ
𝑡

)
of (𝑋𝑡) as the Markov or sub-Markovian process with transition semigroup prescribed by

𝑃ℎ
𝑡
(𝑥, 𝑑𝑦) =

⎧⎪⎨⎪⎩
ℎ(𝑦)
ℎ(𝑥)

𝑄ℎ
𝑡
(𝑥, 𝑑𝑦) if 𝑥 ∈ 𝐸ℎ,

0 if 𝑥 ∈ 𝐸 ⧵ 𝐸ℎ,

where𝑄ℎ
𝑡
(𝑥, 𝑑𝑦) is the semigroup of𝑋 killed upon exiting 𝐸ℎ. Observe that if ℎ neither vanishes nor takes the value +∞ inside

𝐸 then this killed process is 𝑋 itself.
Motivated by applications to Martin boundaries, the Doob ℎ-transform is considered by Meyer [38] and Dellacherie–Meyer

[20]. Their setting includes additional regularity properties of the ℎ-processes 𝑋ℎ. However, for our needs, we use the setting
of [8,12,22] since this is more widely known.

2.3 Definition of Inversion Property (IP)
In this section,

(
(𝑋𝑡, 𝑡 ≥ 0); (ℙ𝑥)𝑥∈𝐸

)
, or 𝑋 for short, is a standard Markov process with values in a state space 𝐸 defined as in

Section 2.1. We settle the following definition of the inversion property.

Definition 2.1. We say that𝑋 has the Inversion Property, for short IP, if there exists an involution 𝐼 ≠ Id of𝐸 and a nonnegative
𝑋-excessive function ℎ on 𝐸, with 0 < ℎ < +∞ in the interior of 𝐸, such that the processes 𝐼(𝑋) and 𝑋ℎ have the same law,
up to a change of time 𝛾𝑡, i.e., under ℙ𝑥, 𝑥 ∈ 𝐸, we have

(
𝐼
(
𝑋𝛾𝑡

)
, 𝑡 ≥ 0

) (𝑑)
=
(
𝑋ℎ
𝑡
, 𝑡 ≥ 0

)
, (2.1)

with 𝑋0 = 𝑥 and 𝑋ℎ0 = 𝐼(𝑥), where 𝛾𝑡 is the inverse of the additive functional 𝐴𝑡 = ∫ 𝑡0 𝑣−1(𝑋𝑠) d𝑠 with 𝑣 being a positive con-
tinuous function and𝑋ℎ is the Doob h-transform of𝑋 (killed when it exits the interior of𝐸). We call (𝐼, ℎ, 𝑣) the characteristics
of the IP. When the functions 𝐼 and ℎ are continuous on �̊�, we say that 𝑋 has IP with continuous characteristics.
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We propose the terminology “Inversion Property” to stress the fact that the involuted (“inversed”) process 𝐼(𝑋) is expressed
by 𝑋 itself, up to a Doob ℎ-transform and a time change. Another important point is that the IP implies that the dual process
𝑋ℎ is obtained by a path transformation 𝐼(𝑋) of 𝑋, up to a time change. For stochastic aspects of IP, see Definition 2.15 and
the last part of Section 2.7.

Inversion properties of stochastic processes were studied in many papers. The IP was studied for Brownian motions in dimen-
sion 𝑛 ≥ 3 and for the spherical inversion in [45]. The IP with the spherical inversion for isotropic stable processes in ℝ𝑛 was
proved in [11]. The continuous case in dimension 1 was studied in [2]. The spherical inversions of self-similar Markov processes
under a reversibility condition have been studied in [3], and, in the particular case of 1-dimensional stable processes in [34].

As pointed out above, the involution involved in all known multidimensional inversion properties (or its variants with a dual
process, see [3]), is spherical. On the other hand, in the continuous one-dimensional case, see [2], non-spherical involutions
systematically appear. In Sections 3 and 4 of this paper we show that many important multidimensional processes satisfy an IP
with a non-spherical involution.

2.4 Harmonic and superharmonic functions and their relation with excessiveness
We first recall the definitions of 𝑋-harmonic, regular 𝑋-harmonic and 𝑋-superharmonic functions on an open set 𝐷 ⊂ 𝐸.
For short, we will say “(super)harmonic on 𝐷” instead of “𝑋-(super)harmonic on 𝐷”, and “(super)harmonic” instead of “𝑋-
(super)harmonic on 𝐸”.

A Borel function 𝑓 is harmonic on 𝐷 if, for any open bounded set 𝐵 ⊂ �̄� ⊂ 𝐷, we have

𝔼𝑥
(
𝑓
(
𝑋𝜏𝐵

)
, 𝜏𝐵 <∞

)
= 𝑓 (𝑥),

and is superharmonic on 𝐷 if

𝔼𝑥
(
𝑓
(
𝑋𝜏𝐵

)
, 𝜏𝐵 <∞

) ≤ 𝑓 (𝑥),
for all 𝑥 ∈ 𝐵, where 𝜏𝐵 is the first exit time from 𝐵, i.e., 𝜏𝐵 = inf{𝑠 > 0;𝑋𝑠 ∉ 𝐵}. A Borel function 𝑓 is regular harmonic on
𝐷 if 𝔼𝑥

(
𝑓
(
𝑋𝜏𝐷

)
, 𝜏𝐷 < ∞

)
= 𝑓 (𝑥). By the strong Markov property, regular harmonicity on𝐷 implies harmonicity on𝐷. In fine

potential theory [20,38], nearly-Borel measurable functions are also considered. For our needs and applications, we consider
Borel functions, as in the settings of [8,12,22]. Let us point out the following relations between superharmonic and excessive
functions for standard Markov processes.

Proposition 2.2. Suppose that 𝑋 is a standard Markov process and let 𝑓 ∶ 𝐸 → [0,∞] be a nonnegative function. Let 𝐷 ⊂ 𝐸
be an open set.

(i) If 𝑓 is excessive on 𝐷 then 𝑓 is superharmonic on 𝐷.
(ii) If 𝑓 is superharmonic on 𝐷 and lim inf 𝑡→0+ 𝔼𝑥 𝑓 (𝑋𝑡) ≥ 𝑓 (𝑥), for all 𝑥 ∈ 𝐷 , then 𝑓 is excessive on 𝐷.

(iii) Suppose that 𝑓 is a continuous function on 𝐸. Then 𝑓 is superharmonic on 𝐷 if and only if 𝑓 is excessive on 𝐷.

Proof. Without loss of generality we suppose 𝐷 = �̊�, otherwise we consider the process 𝑋 killed when exiting 𝐷.
Part (i) is from Proposition [8, II(2.8)] of the book by Blumenthal and Getoor. Part (ii) is from Corollary [8, II(5.3)], see also

Dynkin's book [22, Theorem 12.4].
In order to prove Part (iii), we use the right-continuity of 𝑋𝑡 when 𝑡→ 0+, the continuity of 𝑓 and the Fatou lemma to see

that the condition from (ii) is fulfilled and 𝑓 is excessive. □

Remark 2.3. Proposition 2.2(iii) is essentially a particular case of [38, Theorem 11]. Actually, the fact that a nearly-Borel
mesurable superharmonic function is excessive if and only if it is finely continuous is a direct application of the theory of
strongly supermedian functions developed in [26,27]. The papers [6,7] are more recent references on the topic.

2.5 Kelvin transform: definition and dual Kelvin transform
We shall define the Kelvin transform for 𝑋-harmonic and 𝑋-superharmonic functions. In the Kelvin transform, only functions
on open subsets𝐷 ⊂ 𝐸 are considered. For convenience, we suppose them to be equal to 0 on 𝜕𝐸 (otherwise all the integrals in
this section should be written on �̊�, cf. [11]).
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Definition 2.4. Let 𝐼 ∶ 𝐸 → 𝐸 be an involution. We say that there exists a Kelvin transform  on the space of 𝑋-harmonic
functions if there exists a Borel function 𝑘 ≥ 0, on 𝐸, with 𝑘|𝜕𝐸 = 0, such that the function 𝑥 → 𝑓 (𝑥) =𝑘(𝑥)𝑓 (𝐼(𝑥)) is
𝑋-harmonic on 𝐼(𝐷), whenever 𝑓 is 𝑋-harmonic on an open set 𝐷 ⊂ 𝐸.

A useful tool in the study of the Kelvin transform is provided by the dual Kelvin transform ∗ acting on positive measures 𝜇
on 𝐸 and defined formally by

∫ 𝑓 𝑑(∗𝜇) = ∫ 𝑓𝑑𝜇 (2.2)

for all positive Borel functions 𝑓 on 𝐸, with 𝑓 |𝜕𝐸 = 0 and  ⋅ 𝑓 ∶= 𝑘 𝑓 ◦ 𝐼 , cf. [11,42]. Looking at the right-hand side of
(2.2) we see that it is equal to ∫ 𝑓 (𝐼(𝑦))𝑘(𝑦)𝑑𝜇(𝑦). Consequently, ∗𝜇 = (𝑘𝜇) ◦ 𝐼−1 = (𝑘𝜇) ◦ 𝐼 , i.e. ∗𝜇 is simply the image
(transport) of the mesure 𝑘 𝑑𝜇 by the involution 𝐼 . This shows that ∗𝜇 exists and is a positive measure on 𝐼(𝐹 ) for any positive
measure 𝜇 supported on 𝐹 ⊂ 𝐸.

Former results on Kelvin transform only concern the Brownian motion (see e.g. [4]), the isotropic 𝛼-stable processes and the
Dunkl Laplacian and they always refer to the spherical involution 𝐼𝑠𝑝ℎ(𝑥) = 𝑥∕‖𝑥‖2.

In the isotropic stable case, let𝐾𝛼(𝑓 )(𝑥) = ‖𝑥‖𝛼−𝑛𝑓(𝐼𝑠𝑝ℎ(𝑥)). Riesz noticed in 1938 (see [42, Section 14, p.13]) the following
transformation formula for the Riesz potential 𝑈𝛼(𝜇) of a measure 𝜇, in the case 𝛼 < 𝑛:

𝐾𝛼(𝑈𝛼(𝜇)) = 𝑈𝛼
(
𝐾∗
𝛼
𝜇
)
,

see also [11, formula (80), p.115]. It follows that the function 𝐾𝛼(𝑈𝛼(𝜇)) is 𝛼-harmonic. The 𝛼-harmonicity of the Kelvin
transform𝐾𝛼(𝑓 ) for all 𝛼-harmonic functions was proven in [9,10]. In [11] it was strengthened to regular 𝛼-harmonic functions.

In the Dunkl case, let Δ𝑘 be the Dunkl Laplacian on ℝ𝑛 (see e.g. [3, Section 4C]). Let 𝐾𝑢 = ℎ ⋅ 𝑢 ◦ 𝐼𝑠𝑝ℎ, where ℎ(𝑥) =‖𝑥‖2−𝑛−2𝛾 is the Dunkl-excessive function described in [3, Cor. 4.7]. In [31, Th. 3.1] it was proved that if Δ𝑘𝑢 = 0 then
Δ𝑘(𝐾𝑢) = 0.

2.6 Kelvin transform for processes with IP
Now we relate the Kelvin transform to the inversion property. In the following result we will prove that a Kelvin transform exists
for processes satisfying the IP of Definition 2.1. The proof is based on the ideas of the proof of [11, Lemma 7] in the isotropic
𝛼-stable case.

Theorem 2.5. Let 𝑋 be a standard Markov process. Suppose that 𝑋 has the inversion property (2.1) with characteristics
(𝐼, ℎ, 𝑣). Let 𝐷 ⊂ 𝐸ℎ be an open set. Then the Kelvin transform 𝑓 (𝑥) = ℎ(𝑥)𝑓 (𝐼(𝑥)) has the following properties:

(i) If 𝑓 is regular harmonic on 𝐷 ⊂ 𝐸ℎ and 𝑓 = 0 on 𝐷𝑐 then 𝑓 is regular harmonic on 𝐼(𝐷).
(ii) If 𝑓 is superharmonic on 𝐷 ⊂ 𝐸ℎ then 𝑓 is superharmonic on 𝐼(𝐷).

Proof. Recall that 𝐸ℎ = {𝑥 ∈ 𝐸 ∶ 0 < ℎ(𝑥) < ∞} and consider an open set 𝐷 ⊂ 𝐸ℎ, and 𝑥 ∈ 𝐷. Let 𝜔𝑥
𝐷

be the harmonic
measure for the process 𝑋 departing from 𝑥 and leaving 𝐷, i.e. the probability law of 𝑋𝑥

𝜏𝑋
𝐷

. In the first step of the proof, we

show that the Inversion Property of the process 𝑋 implies the following formula for the dual Kelvin transform of the harmonic
measure (cf. [11, (67)])

∗𝜔𝑥
𝐷
= ℎ(𝑥)𝜔𝐼(𝑥)

𝐼(𝐷), 𝐷 ⊂ 𝐸ℎ, 𝑥 ∈ 𝐷. (2.3)

In order to show (2.3), we first notice that if 𝑌𝑡 = 𝐼(𝑋𝛾𝑡 ) then

𝜏𝑌
𝐷
= inf

{
𝑡 ≥ 0 ∶ 𝑌𝑡 ∉ 𝐷

}
= inf

{
𝑡 ≥ 0 ∶ 𝑋𝛾𝑡 ∉ 𝐼(𝐷)

}
= 𝐴
(
𝜏𝑋
𝐼(𝐷)
)
,

so that, for 𝐵 ⊂ 𝐸ℎ and 𝑥 ∈ 𝐷, we get

ℙ𝑥
(
𝑌𝜏𝑌
𝐷
∈ 𝐵, 𝜏𝑌

𝐷
< ∞

)
= ℙ𝐼(𝑥)

(
𝑋
𝛾
(
𝐴
(
𝜏𝑋
𝐼(𝐷)

)) ∈ 𝐼(𝐵), 𝜏𝑋
𝐼(𝐷) < ∞

)
= 𝜔𝐼(𝑥)

𝐼(𝐷)(𝐼(𝐵)).
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By the Inversion Property satisfied by 𝑋, the last probability equals

ℙ𝑥
(
𝑌𝜏𝑌
𝐷
∈ 𝐵, 𝜏𝑌

𝐷
< ∞

)
= ℙ𝑥

((
𝑋ℎ
)
𝜏𝑋
ℎ

𝐷

∈ 𝐵, 𝜏𝑋ℎ
𝐷
< ∞

)
= 1
ℎ(𝑥)

𝔼𝑥
(
ℎ
(
𝑋𝜏𝑋

𝐷

)
𝟏𝐵
(
𝑋𝜏𝑋

𝐷

)
, 𝜏𝑋
𝐷
<∞

)
= 1
ℎ(𝑥) ∫ ℎ(𝑦)𝟏𝐵(𝑦) 𝜔𝑥𝐷(𝑑𝑦).

We conclude that

ℎ(𝑥)𝜔𝐼(𝑥)
𝐼(𝐷)(𝐼(𝐵)) = ∫ ℎ(𝑦)𝟏𝐼(𝐵)(𝐼(𝑦)) 𝜔𝑥𝐷(𝑑𝑦) = ∫ 𝟏𝐼(𝐵)(𝑦) 𝜔𝑥𝐷(𝑑𝑦) = ∫ 𝟏𝐼(𝐵)(𝑦)

(∗𝜔𝑥
𝐷

)
(𝑑𝑦)

and (2.3) follows. Now let 𝑓 ≥ 0 be a Borel function and 𝑥 ∈ 𝐼(𝐷). We have, by definition of ∗ and by (2.3),

𝔼𝑥𝑓
(
𝑋𝜏𝑋

𝐼(𝐷)

)
= ∫ 𝑓 𝑑𝜔𝑥

𝐼(𝐷) = ∫ 𝑓 𝑑
(∗𝜔𝑥

𝐼(𝐷)

)
= ℎ(𝑥)∫ 𝑓 𝑑𝜔

𝐼(𝑥)
𝐷

= ℎ(𝑥)𝔼𝐼(𝑥)𝑓
(
𝑋𝜏𝑋

𝐷

)
.

Hence, if 𝑓 is any Borel function such that 𝔼𝑧
|||𝑓(𝑋𝜏𝑋𝐷 )||| < ∞ for all 𝑧 ∈ 𝐷, then

𝔼𝑥𝑓
(
𝑋𝜏𝑋

𝐼(𝐷)

)
= ℎ(𝑥)𝔼𝐼(𝑥)𝑓

(
𝑋𝜏𝑋

𝐷

)
, 𝑥 ∈ 𝐼(𝐷). (2.4)

Formula (2.4) implies easily the statements (i) and (ii) of the theorem. For example, in order to prove (ii), we consider 𝑓
superharmonic on𝐷. For any open bounded set𝐵 ⊂ �̄� ⊂ 𝐷 and 𝑥 ∈ 𝐼(𝐵), we have 𝔼𝐼(𝑥) 𝑓

(
𝑋𝜏𝑋

𝐵

) ≤ 𝑓 (𝐼(𝑥)). Then (2.4) implies

that

𝔼𝑥𝑓
(
𝑋𝜏𝑋

𝐼(𝐵)

) ≤ ℎ(𝑥)𝑓 (𝐼(𝑥)) = 𝑓 (𝑥),
so 𝑓 is superharmonic on 𝐷. □

Now we show that the Kelvin transform also preserves excessiveness of nonnegative functions.

Theorem 2.6. Let𝑋 be a standard Markov process. Suppose that𝑋 has the inversion property (2.1) with continuous character-
istics (𝐼, ℎ, 𝑣). Let𝐷 ⊂ 𝐸ℎ be an open set. If𝐻 ≥ 0 is an excessive continuous function on𝐷 then the function 𝐻 is excessive
on the set 𝐼(𝐷).

Proof. Without loss of generality we suppose 𝐷 = �̊�, otherwise we consider the process 𝑋 killed when exiting 𝐷 and replace
𝜁 by the first exit time from 𝐷 of 𝑋.

Let𝐻 be excessive for 𝑋. For any 𝜆 > 0 we can write

𝜑(𝜆) ∶= ∫
∞

0
𝑒−𝜆𝑡𝔼𝑥

(
ℎ(𝑋𝑡)
ℎ(𝑥)

𝐻 ◦ 𝐼(𝑋𝑡)
𝐻 ◦ 𝐼(𝑥)

, 𝑡 < 𝜁

)
𝑑𝑡 = ∫

∞

0
𝑒−𝜆𝑡𝔼𝑥

(
𝐻 ◦ 𝐼

(
𝑋ℎ
𝑡

)
𝐻 ◦ 𝐼(𝑥)

, 𝑡 < 𝜁ℎ

)
𝑑𝑡,

where 𝜁 and 𝜁ℎ are the lifetimes of processes 𝑋 and 𝑋ℎ, respectively. Using (2.1) and making the change of variables 𝛾𝑡 = 𝑟,
we get

𝜑(𝜆) = ∫
∞

0
𝑒−𝜆𝑡𝔼𝐼(𝑥)

(
𝐻(𝑋𝛾𝑡 )
𝐻 ◦ 𝐼(𝑥)

, 𝑡 < 𝐴𝜁

)
𝑑𝑡

= 𝔼𝐼(𝑥)
(
∫
𝜁

0
𝑒−𝜆𝐴𝑟

𝐻(𝑋𝑟)
𝐻 ◦ 𝐼(𝑥)

𝑑𝐴𝑟

)

= 𝔼𝐼(𝑥)

(
∫
𝜁𝐻

0
𝑒−𝜆𝐴

𝐻
𝑟 𝑑𝐴𝐻

𝑟

)

= ∫
∞

0
𝑒−𝜆𝑡ℙ𝐼(𝑥)

(
𝑡 < 𝐴𝐻

𝜁𝐻

)
𝑑𝑡.
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By the injectivity of Laplace transform, we conclude that

𝔼𝑥
(
ℎ(𝑋𝑡)
ℎ(𝑥)

𝐻 ◦ 𝐼(𝑋𝑡)
𝐻 ◦ 𝐼(𝑥)

, 𝑡 < 𝜁

)
= ℙ𝐼(𝑥)

(
𝑡 < 𝐴𝐻

𝜁𝐻

) ≤ 1 for a.e. 𝑡 ≥ 0.

By the continuity of 𝐼, ℎ and 𝐻 , the right-continuity of (𝑋𝑡) and the Fatou Lemma we get the excessivity inequality
𝔼𝑥
(
ℎ(𝑋𝑡)𝐻 ◦ 𝐼(𝑋𝑡)

) ≤ ℎ(𝑥)𝐻 ◦ 𝐼(𝑥) for all 𝑡 and 𝑥.
Using Fubini theorem, we get

𝜆𝜑(𝜆) = 1 − 𝔼𝐼(𝑥)
(
𝑒
−𝜆𝐴𝐻

𝜁𝐻

)
→ 1, as 𝜆→ ∞,

because ℙ𝑥
(
𝐴𝐻
𝜁𝐻

= 0
)
= ℙ𝑥

(
𝜁𝐻 = 0

)
= ℙ𝑥(𝜁 = 0) = 0. By the Tauberian theorem, we get that

lim
𝑡→0+

𝔼𝑥
(
ℎ(𝑋𝑡)
ℎ(𝑥)

𝐻 ◦ 𝐼(𝑋𝑡)
𝐻 ◦ 𝐼(𝑥)

, 𝑡 < 𝜁

)
= 1.

We have proven that ℎ ⋅𝐻 ◦ 𝐼 is excessive. □

Remark 2.7. Theorem 2.6 may be also proven using Proposition 2.2(iii) and Theorem 2.5(ii).

Lemma 2.8. Suppose that 𝑋 is an absolutely continuous standard Markov process (i.e. the distribution 𝑝𝑡(𝑥, 𝑑𝑦) is absolutely
continuous with respect to the Lebesgue measure on 𝐸 for each 𝑥 ∈ 𝐸 and 𝑡 > 0). Let𝐻 be a continuous 𝑋-excessive function
and let 𝜏𝑡 be the inverse of the additive functional 𝐴𝑡 = ∫ 𝑡0 𝑣−1(𝑋𝑠) d𝑠 where 𝑣 > 0 is continuous on 𝐸. Suppose that(

𝑋𝐻
𝑡

)
𝑡≥0

(𝑑)
=
(
𝑋𝜏𝑡

)
𝑡≥0 . (2.5)

Then𝐻 is constant and 𝜏𝑡 = 𝑡, for 𝑡 > 0.

Proof. Suppose that the process𝑋 is transient. Let𝑈 (𝑥, 𝑦) = ∫ ∞
0 𝑝𝑡(𝑥, 𝑦) 𝑑𝑡 be the density of the potential kernel of𝑋. We equate

the potentials of both processes in (2.5) and get that 𝐻(𝑦)
𝐻(𝑥)𝑈 (𝑥, 𝑦) = 𝑣(𝑦)𝑈 (𝑥, 𝑦) for almost all 𝑥, 𝑦 ∈ 𝐸. Hence 𝐻(𝑦)

𝑣(𝑦) = 𝐻(𝑥) a.s.,

so𝐻 = 𝑐𝑜𝑛𝑠𝑡 > 0 and 𝑣 = 1. For recurrent 𝑋, the proof is similar. For any open 𝐺 ⊂ 𝐸, instead of the process 𝑋, we consider
the process𝑋 killed when entering𝐺 and its potential kernel𝑈𝐺(𝑥, 𝑦). Recall that an irreducible recurrent process starting from

𝐸 ⧵ 𝐺 enters 𝐺 with probability 1. We get 𝐻(𝑦)
𝑣(𝑦) = 𝐻(𝑥) a.s. on 𝐸 ⧵ 𝐺 for every 𝐺. We conclude that 𝐻 is constant and 𝜏𝑡 = 𝑡,

for 𝑡 > 0. □

Corollary 2.9. Let𝑋 be a standard absolutely continuous Markov process. Suppose that𝑋 has the inversion property (2.1) with
continuous characteristics (𝐼, ℎ, 𝑣). Then there exists 𝑐 > 0 such that the function ℎ ⋅ ℎ ◦ 𝐼 = 𝑐 is constant on𝐸. By considering,
from now on, the dilated function ℎ∕

√
𝑐 in place of ℎ, we have

ℎ ◦ 𝐼 = 1∕ℎ and 𝑣 ◦ 𝐼 = 1∕𝑣. (2.6)

Proof. Assume that 𝑋 satisfies (2.1). By Theorem 2.6, the function ℎ ⋅ ℎ ◦ 𝐼 is excessive, so the Doob transform 𝑋ℎ⋅ℎ ◦ 𝐼
𝑡

is a
Markov process. Let us compute its 𝜆-resolvent.

For any function 𝑓 ∈ 0(𝐸), 𝑥 ∈ 𝐸 and 𝜆 > 0 we can write

𝜓(𝜆) ∶= ∫
∞

0
𝑒−𝜆𝑡𝔼𝑥

(
ℎ(𝑋𝑡)
ℎ(𝑥)

ℎ ◦ 𝐼(𝑋𝑡)
ℎ ◦ 𝐼(𝑥)

𝑓 (𝑋𝑡), 𝑡 < 𝜁
)
𝑑𝑡 = ∫

∞

0
𝑒−𝜆𝑡𝔼𝑥

(
ℎ ◦ 𝐼(𝑋ℎ

𝑡
)

ℎ ◦ 𝐼(𝑥)
𝑓
(
𝑋ℎ
𝑡

)
, 𝑡 < 𝜁ℎ

)
𝑑𝑡.

By using (2.1) and making the change of variables 𝛾𝑡 = 𝑟, we obtain

𝜓(𝜆) = ∫
∞

0
𝑒−𝜆𝑡𝔼𝐼(𝑥)

(
ℎ(𝑋𝛾𝑡 )
ℎ ◦ 𝐼(𝑥)

𝑓
(
𝐼
(
𝑋𝛾𝑡

))
, 𝑡 < 𝐴𝜁

)
𝑑𝑡

= 𝔼𝐼(𝑥)
(
∫
𝜁

0
𝑒−𝜆𝐴𝑟

ℎ(𝑋𝑟)
ℎ ◦ 𝐼(𝑥)

𝑓 (𝐼(𝑋𝑟)) 𝑑𝐴𝑟
)

= 𝔼𝐼(𝑥)

(
∫
𝜁𝐻

0
𝑒−𝜆𝐴

ℎ
𝑟 𝑓
(
𝐼
(
𝑋ℎ
𝑟

))
𝑑𝐴ℎ

𝑟

)
.
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Let𝑀𝑟 = ∫ 𝑟0 (𝑣 ◦ 𝐼(𝑋𝛾𝑠))−1𝑑𝑠 and let 𝑚𝑟 be the inverse of𝑀𝑟. Using again (2.1) and substituting𝑀𝑟 = 𝑣, we get

𝜓(𝜆) = 𝔼𝑥
(
∫
𝐴𝜁

0
𝑒−𝜆𝑀𝑟𝑓

(
𝑋𝛾𝑟

)
𝑑𝑀𝑟

)
= 𝔼𝑥

(
∫
𝜁

0
𝑒−𝜆𝑣𝑓

(
𝑋𝛾𝑚𝑣

)
𝑑𝑣

)
.

The equality of 𝜆-resolvents for all 𝜆 > 0 and 𝑓 ∈ 0(𝐸) implies the equality in law of two Markov processes(
𝑋ℎ⋅ℎ ◦ 𝐼
𝑡

)
𝑡≥0

(𝑑)
=
(
𝑋𝛾𝑚𝑡

)
𝑡≥0 .

The last equality implies that 𝑋 has the same distribution as the Doob transform 𝑋ℎ⋅ℎ ◦ 𝐼 time changed. By applying
Lemma 2.8, we see that ℎ ⋅ ℎ ◦ 𝐼 = 𝑐 > 0 and 𝛾𝑚𝑡 = 𝑡, for 𝑡 > 0.

We easily check that the inverse of 𝛾𝑚𝑡 is𝑀𝐴𝑡
= ∫ 𝑡0 (𝑣(𝑋𝑠)𝑣 ◦ 𝐼(𝑋𝑠))−1d𝑠. So𝑀𝐴𝑡

= 𝑡, 𝑡 ≥ 0, holds if and only if 𝑣 ◦ 𝐼 = 1∕𝑣.
Hence, Equations (2.6) are proved. □

Remark 2.10. In Corollary 2.9, instead of the hypothesis of absolute continuity of the process X, we can consider the weaker
condition on the support of the semi-group:

supp(𝑝𝑡(𝑥, 𝑑𝑦)) = 𝐸, 𝑥 ∈ �̊�, 𝑡 > 0. (2.7)

Instead of using Lemma 2.8, we then reason in the following way.
Denote𝐻𝑚 = 𝑚−1(ℎ) for𝑚 ≥ 1. In particular𝐻2 = (ℎ) = ℎ ⋅ ℎ ◦ 𝐼 and𝐻2𝑘 = 𝐻𝑘

2 . By Theorem 2.6, all the functions𝐻𝑚
are excessive. By Fatou Lemma, a pointwise limit of a sequence of nonnegative excessive functions is an excessive function. Thus
𝐻 ∶= lim𝑘 𝐻2𝑘 is excessive. Suppose that 𝐻2 = ℎ ⋅ ℎ ◦ 𝐼 is non-constant. By dilation of ℎ, we can suppose that inf 𝐻2 < 1
and sup𝐻2 > 1. Let 𝑈 = 𝐻−1

2 ((1,∞)). The set 𝑈 is non empty and open in 𝐸 and 𝐻 = ∞ on 𝑈 . Start 𝑋 from 𝑥0 such that
𝐻2(𝑥0) < 1. Then𝐻(𝑥0) = 0. But𝐻 is excessive and, by (2.7) we have ℙ𝑥(𝑋𝑡 ∈ 𝑈 ) > 0 so that

0 = 𝐻(𝑥0) ≥ 𝔼𝑥0 𝐻(𝑋𝑡) ≥ 𝔼𝑥0 (𝐻(𝑋𝑡), 𝑋𝑡 ∈ 𝑈 ) = ∞,

which is a contradiction. Thus ℎ ⋅ ℎ ◦ 𝐼 = 𝑐 > 0.

We point out now the following bijective property of the Kelvin transform.

Proposition 2.11. Suppose that𝑋 has the inversion property (2.1) with continuous characteristics (𝐼, ℎ, 𝑣). Let  be the Kelvin
transform. Then

(i)  is an involution operator on the space of 𝑋-harmonic (𝑋-superharmonic) functions i.e.  ◦  = 𝐼𝑑.
(ii) Let 𝐷 ⊂ 𝐸 be an open set.  is a one-to-one correspondence between the set of 𝑋-harmonic functions on 𝐷 and the set of

𝑋-harmonic functions on 𝐼(𝐷).

Proof. The first formula of (2.6) implies by a direct computation that (𝑓 ) = 𝑓 . Then (ii) is obvious. □

2.7 Invariance of IP by a bijection and by a Doob transform. Stochastic Inversion Property
We shall now give some general properties of spatial inversions. We start with the following proposition which is useful when
proving that a process has IP. Its proof is simple and hence is omitted.

Proposition 2.12. Suppose that 𝑋 has the inversion property (2.1) with characteristics (𝐼, ℎ, 𝑣). Assume that Φ ∶ 𝐸 → 𝐹

is a bijection. Then the mapping 𝐽 = Φ ◦ 𝐼 ◦ Φ−1 is an involution on 𝐹 . Furthermore, the process 𝑌 = Φ(𝑋) has IP with
characteristics

(
𝐽 , ℎ ◦ Φ−1, 𝑣 ◦ Φ−1).

In the following result we prove that we can extend the inversion property of a process 𝑋 on a state space 𝐸 to an inversion
property for the Doob𝐻-transform of 𝑋 killed on exiting from a smaller set 𝐹 ⊂ 𝐸.

Proposition 2.13. Suppose that 𝑋 has the inversion property (2.1) with continuous characteristics (𝐼, ℎ, 𝑣).
Let 𝐹 ⊆ 𝐸 be such that 𝐼(𝐹 ) = 𝐹 and suppose that there exists an excessive continuous function𝐻 ∶ 𝐹 → ℝ+ for 𝑋 killed

when it exits 𝐹 . Consider 𝑌 = 𝑋𝐻 , the Doob 𝐻-transform of 𝑋. Then the process 𝑌 has the IP with characteristics
(
𝐼, ℎ̃, 𝑣

)
,

with ℎ̃ = 𝐻∕𝐻 , where 𝐻 = ℎ ⋅𝐻 ◦ 𝐼 is the Kelvin transform of𝐻 .
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Proof. To simplify notation, set𝑍 = 𝑋ℎ and denote by 𝛾𝐻
𝑡

the inverse of the additive functional𝐴𝐻
𝑡

= ∫ 𝑡0 d𝑠
𝑣
(
𝑋𝐻𝑠

) . Below, using

the properties of a time-changed Doob transform in the first equality and the IP for 𝑋 in the second equality, we can write for
all test functions 𝑔

𝔼𝑥
(
𝑔
(
𝐼
(
𝑋𝐻
𝛾𝐻
𝑡

))
, 𝑡 < 𝐴𝐻∞

)
= 𝔼𝑥

(
𝑔
(
𝐼
(
𝑋𝛾𝑡

))𝐻 ◦ 𝐼(𝐼(𝑋𝛾𝑡 ))
𝐻 ◦ 𝐼(𝐼(𝑥))

, 𝑡 < 𝐴∞

)

= 𝔼𝐼(𝑥)
(
𝑔(𝑍𝑡)

𝐻 ◦ 𝐼(𝑍𝑡)
𝐻 ◦ 𝐼(𝐼(𝑥))

, 𝑡 < 𝐴∞

)
= 𝔼𝐼(𝑥)

(
𝑔(𝑋𝑡)

𝐻 ◦ 𝐼(𝑋𝑡)ℎ(𝑋𝑡)
𝐻 ◦ 𝐼(𝐼(𝑥))ℎ((𝐼(𝑥)))

, 𝑡 < 𝐴∞

)
= 𝔼𝐼(𝑥)

(
𝑔(𝑋𝑡)

𝐻(𝑋𝑡)
𝐻(𝐼(𝑥))

, 𝑡 < 𝐴∞

)
.

By Theorem 2.6, the function 𝐻 is𝑋-excessive, so the Doob transform𝑋𝐻 is well defined. Thus the processes
(
𝐼
(
𝑋𝐻
𝛾𝐻
𝑡

))
and
(
𝑋𝐻
𝑡

)
are equal in law. We have 𝑋 = 𝑌 1∕𝐻 , so 𝑋𝐻

𝑡
= 𝑌 𝐻∕𝐻

𝑡
, and the IP for the process 𝑌 follows. □

The aim of the following result is to show that processes 𝑋ℎ and 𝐼(𝑋) inherit IP from the process 𝑋 and to determine the
characteristics of the corresponding inversions.

Proposition 2.14. Let𝑋 be a standard absolutely continuous Markov process. Suppose that𝑋 has the inversion property (2.1)
with continuous characteristics (𝐼, ℎ, 𝑣). Then the following inversion properties hold:

(i) The process 𝑋ℎ has IP with characteristics
(
𝐼, ℎ−1, 𝑣

)
.

(ii) The process 𝐼(𝑋) has IP with characteristics
(
𝐼, ℎ−1, 𝑣−1

)
.

Proof. (i) Corollary 2.9 and (2.6) imply that ℎ∕ℎ = 1∕ℎ. The assertion follows from an application of Proposition 2.13.
(ii) Proposition 2.12 implies that 𝐼(𝑋) has IP with characteristics (𝐼, ℎ ◦ 𝐼, 𝑣 ◦ 𝐼). We conclude using formulas (2.6). □

It is natural to interpret Proposition 2.14(i) as the converse of the property IP (2.1).

Definition 2.15. We say that 𝑋 has the stochastic inversion property (SIP) with characteristics (𝐼, ℎ, 𝑣) if 𝑋 has IP with char-
acteristics (𝐼, ℎ, 𝑣) and 𝑋ℎ has IP with characteristics (𝐼, ℎ−1, 𝑣).

This stochastic aspect of the inversion of the Brownian motion was not mentioned by M. Yor [45]. Up to a time change, the
involution 𝐼 maps 𝑋 to 𝑋ℎ and 𝑋ℎ to 𝑋, in the sense of equality of laws.

Proposition 2.14(i) establishes the existence of SIP for absolutely continuous standard Markov processes with IP. We conjec-
ture that all standard Markov processes with IP have SIP. Remark 2.10 confirms the plausibility of this conjecture and shows
SIP for processes verifying IP and the “full support” condition (2.7).

2.8 Dual inversion property and Kelvin transform
There are other types of inversions which involve weak duality, see for instance the books [8] or [19] for a survey on duality.
Two Markov processes ((𝑋𝑡, 𝑡 ≥ 0); (ℙ𝑥)𝑥∈𝐸) and

((
�̂�𝑡, 𝑡 ≥ 0

)
;
(
ℙ̂𝑥
)
𝑥∈𝐸
)
, with semigroups (𝑃𝑡)𝑡≥0 and

(
𝑃𝑡
)
𝑡≥0, respectively,

are in weak duality with respect to some 𝜎-finite measure 𝑚(𝑑𝑥) if, for all positive measurable functions 𝑓 and 𝑔, we have

∫𝐸 𝑔(𝑥)𝑃𝑡𝑓 (𝑥)𝑚(𝑑𝑥) = ∫𝐸 𝑓 (𝑥)𝑃𝑡𝑔(𝑥)𝑚(𝑑𝑥). (2.8)

The following definition is analogous to Definition 2.1, but in place of 𝑋 on the right-hand side we put a dual process �̂�.

Definition 2.16. Let 𝑋 be a standard Markov process on 𝐸. We say that 𝑋 has the Dual Inversion Property, for short DIP, if
there exists an involution 𝐼 ≠ Id of 𝐸 and a nonnegative �̂�-harmonic function ℎ̂ on 𝐸, with 0 < ℎ̂ < +∞ in the interior of 𝐸,
such that the processes 𝐼(𝑋) and �̂�ℎ̂ have the same law, up to a change of time 𝛾𝑡, i.e., for all 𝑥 ∈ 𝐸, we have((

𝐼
(
𝑋𝛾𝑡

)
, 𝑡 ≥ 0

)
,ℙ𝑥
) (𝑑)
=
((
�̂�ℎ̂
𝑡
, 𝑡 ≥ 0

)
,ℙ𝐼(𝑥)

)
, (2.9)
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where 𝛾𝑡 is the inverse of the additive functional 𝐴𝑡 = ∫ 𝑡0 𝑣−1(𝑋𝑠) d𝑠 with 𝑣 being a positive continuous function, �̂� is in weak

duality with 𝑋 with respect to the measure 𝑚(𝑑𝑥), where 𝑚(𝑑𝑥) is a reference measure on 𝐸, and �̂�ℎ̂ is the Doob ℎ̂-transform
of �̂� (killed when it exits 𝐸). We call

(
𝐼, ℎ̂, 𝑣, 𝑚

)
the characteristics of the DIP.

Remark 2.17. We notice that if 𝑋 is self-dual then IP and DIP are equivalent.

Remark 2.18. Self-similar Markov processes having the DIP with spherical inversions were studied in [3]. Non-symmetric 1-
dimensional stable processes were also investigated in [34] and they provide examples of processes that have the DIP, while no
IP is known for them.

Theorem 2.19. Let 𝑋 have DIP property (2.9). There exists the following Kelvin transform. Let 𝑓 be a regular harmonic
(resp. superharmonic, continuous excessive) function for the process𝑋. Then ̂𝑓 (𝑥) ∶= ℎ̂(𝑥)𝑓 (𝐼(𝑥)) is regular harmonic (resp.
superharmonic, excessive) for the process �̂� (in the excessive case, one assumes that ℎ and 𝐼 are continuous).

Proof. The proof is similar to the proofs of Theorem 2.5 and of Theorem 2.6. □

Example 2.20. Let𝑋 be a stable process with index 𝛼 ≥ 1 which is not spectrally one-sided. Let 𝜌− = ℙ0(𝑋1 < 0), 𝜌+ = 1 − 𝜌−
and set 𝑥+ = max(0, 𝑥), 𝑥 ∈ ℝ. The function𝐻(𝑥) = 𝑥𝛼𝜌

−

+ is𝑋-invariant (see [15]), so also superharmonic on (0,∞). Moreover
𝐻(0) = 0. Theorem 2.5 applied to Corollary 2 of [3] implies the existence of the Kelvin transform for 𝛼-superharmonic functions
on ℝ+, vanishing at 0. Thus

̂𝐻(𝑥) = 𝜋(−1)|𝑥|𝛼𝜌+−1𝟏ℝ−(𝑥)

is 𝛼-superharmonic on ℝ−, as defined in [3], (𝜋(−1), 𝜋(1)) is the invariant measure of the first coordinate (angular part) of the
Markov additive process (MAP) associated to𝑋. We conclude, by considering−𝑋 in place of𝑋, that the function𝐺(𝑥) = 𝑥𝛼𝜌

−−1
+

is superharmonic on ℝ+. It is known (see [15]) that 𝐺(𝑥) is excessive on (0,∞). It is interesting to see that the functions𝐻 and
𝐺 are related by the Kelvin transform.

2.9 IP for X and Kelvin transform for operator-harmonic functions
In analytical potential theory, the term “harmonic function” usually means 𝐿𝑓 = 0, for some operator 𝐿. Then we say that 𝑓 is
𝐿-harmonic.

When harmonicity is defined by means of operators, we speak about operator-harmonic functions. The main aim of this
section is to prove that for standard Markov processes with IP the Kelvin transform preserves, under some natural conditions,
the operator-harmonic property.

Note that for a Feller process 𝑋 with infinitesimal generator 𝐴𝑋 and state space 𝐸, if 𝐸 is unbounded then there are no non-
zero 𝐴𝑋-harmonic functions which are in the domain Dom(𝐴𝑋) of 𝐴𝑋 , i.e. if 𝑓 ∈ Dom(𝐴𝑋) ⊂ 0 and 𝐴𝑋𝑓 = 0 then 𝑓 = 0.
For this reason, we will consider in this section two extensions of the infinitesimal generator 𝐴𝑋 : the extended generator �̂�𝑋
and the Dynkin characteristic operator 𝐃𝑋 .

An operator �̂�𝑋 is the extended (resp. full) generator of the process 𝑋 with domain Dom
(
�̂�𝑋
)

if for each 𝑓 ∈ Dom
(
�̂�𝑋
)
,

the process
(
𝑀
𝑓

𝑋
(𝑡), 𝑡 ≥ 0

)
defined, for each fixed 𝑡 ≥ 0, by

𝑀
𝑓

𝑋
(𝑡) = 𝑓 (𝑋𝑡) − ∫

𝑡

0
�̂�𝑋𝑓 (𝑋𝑠) d𝑠

is a local martingale (resp. martingale). Extended and full generators are often used because of links with martingales, see the
book [25] or the more recent paper [39].

For a standard Markov process 𝑋, its Dynkin characteristic operator 𝐃𝑋 is defined by

𝐃𝑋𝑓 (𝑥) = lim
𝑈↘{𝑥}

𝔼𝑥𝑓
(
𝑋𝜏𝑈

)
− 𝑓 (𝑥)

𝔼𝑥𝜏𝑈
, (2.10)

with 𝑈 being any sequence of decreasing bounded open sets such that
⋂
𝑈 = {𝑥} (see [22], where 𝐃𝑋 is denoted by  ).

We stress that the extended generator and the Dynkin characteristic operator exist and characterize all standard Markov
processes.

It is known that when𝑋 is a diffusion, the domains of �̂�𝑋 and of 𝐃𝑋 contain 2 and that the extended generator �̂�𝑋 coincides
on 2 with the Dynkin characteristic operator 𝐃𝑋 (see [41, Prop. 3.9, p. 358], [39, (5.18)] and [22, 5.19]). The extended operator
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�̂�𝑋 restrained to 2 is the second order elliptic differential operator coinciding with the infinitesimal generator 𝐴𝑋 of 𝑋 on its
domain Dom(𝐴𝑋) ⊂ 0 ∩ 2.

The following property of operators �̂�𝑋 and 𝐃𝑋 is straightforward to prove.

Proposition 2.21. Let 𝑋 be a standard Markov process and let 𝜑 be a homeomorphism from 𝐸 onto 𝐸.

(i) We have 𝑓 ∈ Dom
(
�̂�𝜑(𝑋)

)
if and only if 𝑓 ◦ 𝜑 ∈ Dom

(
�̂�𝑋
)

and

�̂�𝜑(𝑋)𝑓 =
[
�̂�𝑋(𝑓 ◦ 𝜑)

]
◦ 𝜑−1.

(ii) We have 𝑓 ∈ Dom
(
𝐃𝜑(𝑋)

)
if and only if 𝑓 ◦ 𝜑 ∈ Dom(𝐃𝑋) and

𝐃𝜑(𝑋)𝑓 =
[
𝐃𝑋(𝑓 ◦ 𝜑)

]
◦ 𝜑−1.

In the next proposition we present known results on the formula for the extended generator �̂�ℎ of the Doob ℎ-transformed
process𝑋ℎ. In order to formulate them, let us recall the notion of a good function in Palmowski–Rolski sense (PR-good function
for short), introduced in [39, (1.1), p. 768] as follows.

Consider a Markov process𝑋 having extended generator �̂�𝑋 with domain Dom
(
�̂�𝑋
)
. For each strictly positive Borel function

𝑓 define

𝐸𝑓 (𝑡) = 𝑓 (𝑋(𝑡))
𝑓 (𝑋(0))

exp

(
−∫

𝑡

0

(
�̂�𝑋𝑓

)
(𝑋(𝑠))

𝑓 (𝑋(0))
d𝑠

)
, 𝑡 ≥ 0.

If, for some function ℎ, the process 𝐸ℎ(𝑡) is a martingale, then it is said to be an exponential martingale and in this case we call
ℎ a good function.

If inf𝑥 ℎ(𝑥) > 0 then 𝐸ℎ(𝑡) is a martingale with respect to the standard filtration (𝑡) if and only if𝑀ℎ
𝑋
(𝑡) is a martingale with

respect to the same filtration (see [25, Lemma 3.2, page 174]).
Simple sufficient conditions for a PR-good function are given in [39, Prop. 3.2(M1)]. Namely, if ℎ ∈ 𝑏 (the space of

bounded measurable functions) and ℎ−1�̂�𝑋ℎ ∈ 𝑏 then ℎ is a PR-good function. If additionally we suppose that �̂�𝑋ℎ = 0
then [39, Prop. 3.2(M1)] implies that the condition ℎ ∈ 𝑏 guarantees that ℎ is a PR-good function. Other sufficient conditions
for 𝐸ℎ(𝑡) to be a martingale could be also deduced from [16].

In the part (iii) of Proposition 2.22 we prove a formula for 𝐃ℎ
𝑋

, the Dynkin characteristic operator of 𝑋ℎ.

Proposition 2.22. Let 𝑋 be a standard Markov process. Suppose that ℎ is excessive for 𝑋.

(i) If 𝑋 is a diffusion then the extended generator �̂�ℎ of the Doob ℎ-transform 𝑋ℎ of 𝑋 is given, for 𝑓 ∈ 2, by

�̂�ℎ(𝑓 ) = ℎ−1�̂�𝑋(ℎ𝑓 ). (2.11)

(ii) If ℎ is PR-good and �̂�-harmonic then (2.11) holds true.
(iii) The Dynkin operator 𝐃ℎ

𝑋
of the Doob ℎ-transform 𝑋ℎ of 𝑋 is given by the formula:

𝐃ℎ
𝑋
(𝑓 ) = ℎ−1𝐃𝑋(ℎ𝑓 ). (2.12)

Proof. (i) This is given in [41, Prop. 3.9, p. 357].
(ii) The statement follows from [39, Theorem 4.2].
(iii) Let 𝜆 > 0. The 𝜆-potential of the ℎ-process 𝑋ℎ equals

𝑈ℎ
𝜆
(𝑥, 𝑑𝑦) = ℎ(𝑦)

ℎ(𝑥)
𝑈𝑋
𝜆
(𝑥, 𝑑𝑦)

where 𝑈𝑋
𝜆

is the 𝜆-potential of 𝑋. Let 𝐵 be the Dynkin operator of the process 𝑋ℎ. Define

𝐾𝜆𝑓 = ℎ−1𝐃𝑋(ℎ𝑓 ) − 𝜆𝑓 .
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To prove (iii) it is enough to show that 𝐵 − 𝜆𝐼𝑑 = 𝐾𝜆. This in turn will be proved if we show that

𝐾𝜆𝑈
ℎ
𝜆
= −𝐼𝑑

(since (𝐵 − 𝜆𝐼𝑑)𝑈ℎ
𝜆
= −𝐼𝑑, the 𝜆-potential operator 𝑈ℎ

𝜆
is a bijection from 0 into the domain of 𝐵 and 𝐵 − 𝜆𝐼𝑑 is the unique

inverse operator). We compute, for a test function 𝑓 ,

𝐾𝜆𝑈
ℎ
𝜆
𝑓 = 1

ℎ(𝑥)
𝐃𝑋
[
ℎ(𝑥)∫

ℎ(𝑦)
ℎ(𝑥)

𝑈𝑋
𝜆
(𝑥, 𝑦)𝑓 (𝑦) 𝑑𝑦

]
− 𝜆∫

ℎ(𝑦)
ℎ(𝑥)

𝑈𝑋
𝜆
(𝑥, 𝑦)𝑓 (𝑦) 𝑑𝑦

= 1
ℎ(𝑥)

(
𝐃𝑋 − 𝜆𝐼𝑑

)
𝑈𝑋
𝜆
(ℎ𝑓 )

= 1
ℎ(𝑥)

(−ℎ(𝑥)𝑓 (𝑥)) = −𝑓 (𝑥),

hence 𝐾𝜆𝑈
ℎ
𝜆
= −𝐼𝑑. □

In the following main result of this subsection, we show that if𝑋 has the property IP, then the Kelvin transform preserves the
operator-harmonicity property for extended generators (under some mild additional hypothesis) and for Dynkin characteristic
operators.

Theorem 2.23. Suppose that 𝑋 has the inversion property (2.1) with characteristics (𝐼, ℎ, 𝑣). Let 𝐻(𝑥) = ℎ(𝑥)𝐻(𝐼(𝑥)) be
the corresponding Kelvin transform.

(i) If 𝑋 is a diffusion, the characteristics of IP are continuous and 𝐻 is �̂�𝑋-harmonic and twice continuously differentiable
on an open set 𝐷 ⊂ 𝐸, then �̂�𝑋(𝐻) = 0 on 𝐼(𝐷).

(ii) If 𝑋 is a standard Markov process, ℎ is a PR-good function and𝐻 is �̂�𝑋-harmonic on 𝐷, then �̂�𝑋(𝐻) = 0 on 𝐼(𝐷).
(iii) If 𝑋 is a standard Markov process, and𝐻 is a 𝐃𝑋-harmonic function on 𝐷 then 𝐃𝑋(𝐻) = 0 on 𝐼(𝐷).

Proof. We first prove (ii) and (iii). Their proofs are identical and based on Propositions 2.21 and 2.22, hence we present only
the proof of (iii).

By Proposition 2.21(ii) we have

𝐃𝐼
(
�̃�
)
= 𝐃𝑋

(
�̃� ◦ 𝐼

)
◦ 𝐼−1 = (𝐃𝑋𝐻) ◦ 𝐼 = 0.

Thus �̃� is 𝐃𝐼 -harmonic on 𝐼(𝐷). By IP, this is equivalent to be 𝐃ℎ
𝑋

-harmonic (the Dynkin operators of 𝐼(𝑋) and 𝑋ℎ differ
by a positive factor corresponding to the time change, see [22], Th. 10.12). Consequently 𝐃ℎ

𝑋

(
�̃�
)
= 0. We now use Propo-

sition 2.22(iii) in order to conclude that 𝐃𝑋
(
ℎ�̃�
)
= 0. Thus ℎ�̃� = ℎ ⋅𝐻 ◦ 𝐼 is 𝐃𝑋-harmonic on 𝐼(𝐷) whenever 𝐻 is 𝐃𝑋-

harmonic on 𝐷.
(i) By (iii), we have 𝐃𝑋(𝑓 ) = 0. By the continuity of𝐻, 𝐼 and ℎ, the function 𝐻 is continuous. Theorem 5.9 of [22] then

implies that 𝐻 is twice continuously differentiable and that 𝐃𝑋(𝐻) = 0. □

We end this section by pointing out relations between 𝑋-harmonic functions on a subset 𝐷 of 𝐸 and Dynkin 𝐃𝑋-harmonic
functions on 𝐷.

Proposition 2.24. Let 𝑋 be a standard Markov process, let 𝐷 ⊂ 𝐸 and let 𝑓 ∶ 𝐷 → ℝ. The following assertions hold true.

(i) If 𝑓 is 𝑋-harmonic then 𝐃𝑋𝑓 = 0, on 𝐷.
(ii) If𝑋 is a diffusion and 𝑓 is continuous then 𝑓 is𝑋-harmonic if and only if it is 𝐃𝑋-harmonic, on𝐷. Moreover, this happens

if and only if 𝑓 is �̂�𝑋-harmonic on 𝐷.

Proof. Part (i) is evident by definition (2.10) of 𝐃𝑋 . It gives the “only if” part of the first part of (ii). If 𝑓 is continuous and
𝐃𝑋-harmonic on 𝐷 then, by Theorem 5.9 of [22], 𝑓 is twice continuously differentiable and �̂�𝑋𝑓 = 0 on 𝐷. A strengthened
version of Dynkin's formula [22, (13.95)] implies that if �̂�𝑋𝑓 = 0 on 𝐷 then 𝑓 is 𝑋-harmonic on 𝐷. This completes the proof
of (ii). □

Remark 2.25. Theorem 2.23(iii) and Proposition 2.24(ii) give another “operator-like” proof of Theorem 2.5 when𝑋 is a diffusion
and for continuous 𝑋-harmonic functions, see also Remark 7 in [2].
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Remark 2.26. Proposition 2.24(ii) suggests that there should be, under some mild assumptions, an equivalence between the
�̂�𝑋-harmonicity and the property that 𝑓 (𝑋) is a local martingale (martingale for full generator). One implication is obvious.
That is, if 𝑓 is �̂�𝑋-harmonic then 𝑓 (𝑋) is a local martingale (martingale for full generator).

Remark 2.27. It seems plausible that Proposition 2.22(ii) holds for any 𝑋-excessive function ℎ in place of a PR-good function.
Consequently, when 𝑋 has IP, the existence of Kelvin transform would be proven for �̂�𝑋-harmonic functions.

Observe that for the Dynkin characteristic operator, Proposition 2.22(iii) has no additional hypotheses on the excessive func-
tion ℎ. Note also that Dynkin [22, p. 16] introduces quasi-characteristic operators, clearly related with the martingale property.
We claim that under some mild regularity conditions: 𝐷𝑜𝑚

(
�̂�𝑋
)
⊂  and �̂�𝑋

(
𝐷𝑜𝑚(�̂�𝑋)

)
⊂ , the extended generator �̂�𝑋

coincides with the quasi-characteristic Dynkin operator, so also with the characteristic Dynkin operator (see [22, p. 16]).

2.10 Inversion property and self-similarity
We end this section by a discussion on the relations between the IP and self-similarity. In [2] the IP of non necessarily self-
similar one-dimensional diffusions is proven and corresponding non-spherical involutions are given. There are ℎ-transforms of
Brownian motion on intervals which are not self-similar Markov processes. On the other hand IP is preserved by conditioning,
see Proposition 2.13, but self-similarity is not.

This shows that self-similar Feller processes are not the only ones having the inversion property with the spherical inversion
and a harmonic function being a power of the modulus.

3 INVERSION OF PROCESSES HAVING THE TIME INVERSION PROPERTY

3.1 Characterization and regularity of processes with t.i.p.
Now let us introduce a class of processes that can be inverted in time. Let 𝑆 be a non trivial cone of ℝ𝑛, for some 𝑛 ≥ 1, i.e.
𝑆 ≠ ∅, 𝑆 ≠ {0} and 𝑥 ∈ 𝑆 implies 𝜆𝑥 ∈ 𝑆 for all 𝜆 ≥ 0. We take 𝐸 to be the Alexandroff one point compactification 𝑆 ∪ {∞}
of 𝑆. Let

(
(𝑋𝑡, 𝑡 ≥ 0); (ℙ𝑥)𝑥∈𝐸

)
be a homogeneous Markov process on 𝐸 absorbed at 𝜕𝑆 ∪ {∞}. 𝑋 is said to have the time

inversion property (t.i.p. for short) of degree 𝛼 > 0, if the process
((
𝑡𝛼𝑋1∕𝑡, 𝑡 ≥ 0

)
, (ℙ𝑥)𝑥∈𝐸

)
is a homogeneous Markov process.

Assume that the semigroup of 𝑋 is absolutely continuous with respect to the Lebesgue measure, and write

𝑝𝑡(𝑥, 𝑑𝑦) = 𝑝𝑡(𝑥, 𝑦)𝑑𝑦, 𝑥, 𝑦 ∈ �̊�. (3.1)

The process
(
𝑡𝛼𝑋 1

𝑡

, 𝑡 > 0
)

is usually an inhomogenous Markov process with transition probability densities 𝑞(𝑥)
𝑠,𝑡

(𝑧, 𝑦), for 𝑠 < 𝑡

and 𝑥, 𝑦 ∈ 𝑆, satisfying

𝔼𝑥
(
𝑓

(
𝑡𝛼𝑋 1

𝑡

)| 𝑠𝛼𝑋 1
𝑠

= 𝑧
)

= ∫ 𝑓 (𝑦)𝑞𝑥
𝑠,𝑡
(𝑧, 𝑦) 𝑑𝑦

where

𝑞
(𝑥)
𝑠,𝑡

(𝑎, 𝑏) = 𝑡−𝑛𝛼
𝑝 1
𝑡

(
𝑥,

𝑏

𝑡𝛼

)
𝑝 1
𝑠
−1
𝑡

(
𝑏

𝑡𝛼
,
𝑎

𝑠𝛼

)
𝑝 1
𝑠

(
𝑥,

𝑎

𝑠𝛼

) . (3.2)

We shall now extend the setting and conditions considered by Gallardo and Yor in [29]. Suppose that

𝑝𝑡(𝑥, 𝑦) = 𝑡−𝑛𝛼∕2𝜙
(
𝑥

𝑡𝛼∕2
,
𝑦

𝑡𝛼∕2

)
𝜃

(
𝑦

𝑡𝛼∕2

)
exp
{
−𝜌(𝑥) + 𝜌(𝑦)

2𝑡

}
, (3.3)

where the functions 𝜙 ∶ �̊� × �̊� → ℝ+ and 𝜃, 𝜌 ∶ �̊� → ℝ+ satisfy the following properties: for 𝜆 > 0 and 𝑥, 𝑦 ∈ �̊�

⎧⎪⎨⎪⎩
𝜙(𝜆𝑥, 𝑦) = 𝜙(𝑥, 𝜆𝑦),
𝜌(𝜆𝑥) = 𝜆2∕𝛼𝜌(𝑥),
𝜃(𝜆𝑥) = 𝜆𝛽𝜃(𝑥).

(3.4)
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Under conditions (3.3) and (3.4), using (3.2) we immediately conclude that𝑋 has the time inversion property. We need also the
following technical condition (

𝜌1∕2(𝑋𝑡), 𝑡 ≥ 0
)

is a Bessel process of dimension (𝛽 + 𝑛)𝛼 (3.5)

or is a Doob ℎ-transform of it, up to time scaling 𝑡 → 𝑐𝑡, 𝑐 > 0.

To simplify notations let us settle the following definition of a regular process with t.i.p.

Definition 3.1. A regular process with t.i.p. is a Markov process on𝑆 ∪ {∞} where𝑆 is a non-trivial cone in ℝ𝑛 for some 𝑛 ≥ 1,
with an absolutely continuous semigroup with densities satisfying conditions (3.3)–(3.5) and 𝜌(𝑥) = 0 if and only if 𝑥 = 0.

The requirement of regularity for a process with t.i.p. is not very restrictive; all the known examples of processes with t.i.p.
satisfy it. In case when 𝑆 = ℝ𝑛, the authors of [29] and [35] showed that if the above densities are twice differentiable in the
space and time then 𝑋 has time inversion property if and only if it has a semigroup with densities of the form (3.3), or if 𝑋
is a Doob ℎ-transform of a process with a semigroup with densities of the form (3.3). It is proved in [1] that when �̊� = ℝ or
(−∞, 0) or (0,+∞) and the semigroup is conservative, i.e. ∫ 𝑝𝑡(𝑥, 𝑑𝑦) = 1, and absolutely continuous with densities which are
twice differentiable in time and space, then (3.5) is necessary for the t.i.p. to hold. A similar statement is proved in [5] in higher
dimensions under the additional condition that 𝜌 is continuous on 𝑆 = ℝ𝑛 and 𝜌(𝑥) = 0 if and only if 𝑥 = 0.

Remark 3.2. Under the conservativeness condition, it is an interesting problem to find a way to read the dimension of the Bessel
process 𝜌1∕2(𝑋), in (3.5), from (3.3). If we could do that then we would be able to replace condition (3.5) with the weaker
condition that 𝜌(𝑋) is a strong Markov process. Indeed, it was proved in [1] that the only processes having the t.i.p. living on
(0,+∞) are 𝛼 powers of Bessel processes and their ℎ-transforms. 𝜌(𝑋) has the time inversion property and so, if it is Markov
then it is the power of a Bessel process or a process in ℎ-transform with it.

3.2 A natural involution and IP for processes with t.i.p.

Proposition 3.3. The map 𝐼 defined for 𝑥 ∈ 𝑆∖{0} by 𝐼(𝑥) = 𝑥𝜌−𝛼(𝑥), and by 𝐼(0) = ∞, is an involution of 𝐸. Moreover, the
function 𝑥 → 𝑥𝜌−𝜈(𝑥) is an involution on 𝑆∖{0} if and only if 𝜈 = 𝛼.

Proof. It is readily checked that 𝐼 ◦ 𝐼 = 𝐼 by using the homogeneity property of 𝜌 from (3.4). □

We know by [29,35] that a regular process with t.i.p. 𝑋 is a self-similar Markov process, thus so is 𝐼(𝑋). That is why
𝐼(𝑥) = 𝑥𝜌−𝛼(𝑥) is a natural involution for such an 𝑋. Let 𝑈𝑋 denote the potential kernel of a process 𝑋.

We now compute the potential of the involuted process 𝐼(𝑋).

Proposition 3.4. Assuming that 𝑋 is transient for compact sets, the potential of 𝐼(𝑋) is given by

𝑈𝐼(𝑋)(𝑥, 𝑑𝑦) = 𝑉 (𝑦)ℎ(𝑦)
ℎ(𝑥)

𝑈𝑋(𝑥, 𝑑𝑦), (3.6)

where ℎ(𝑥) = 𝜌(𝑥)1−(𝛽+𝑛)𝛼∕2, 𝑉 (𝑦) = Jac(𝐼)(𝑦)𝜌(𝑦)𝑛𝛼−2 and Jac(𝐼) is the modulus of the Jacobi determinant of 𝐼 .

Proof. Recall that 𝑋 is transient for compact sets if and only if its potential 𝑈𝑋(𝑥, 𝑦) is finite. The potential kernel of 𝐼(𝑋) is
given by

𝑈𝐼 (𝑥, 𝑦) = ∫
∞

0
𝑝𝑡(𝐼(𝑥), 𝐼(𝑦))Jac(𝐼(𝑦)) 𝑑𝑡.

First we compute 𝑝𝐼(𝑋)
𝑡

(𝑥, 𝑦) = 𝑝𝑡(𝐼(𝑥), 𝐼(𝑦))Jac(𝐼(𝑦)). According to formula (3.3) we find

𝑝
𝐼(𝑋)
𝑡

(𝑥, 𝑦) = 𝑡−(𝑛+𝛽)𝛼∕2𝜙
(
𝑥,

𝑦

(𝑡𝜌(𝑥)𝜌(𝑦))𝛼

)
𝜌−𝛼𝛽(𝑦)𝜃(𝑦) exp

[
−𝜌(𝑥) + 𝜌(𝑦)
𝑡𝜌(𝑥)𝜌(𝑦)

]
Jac(𝐼(𝑦)).

Making the substitution 𝑡 𝜌(𝑥) 𝜌(𝑦) = 𝑠 we obtain easily formula (3.6). □

We are now ready to prove the main result of this section.

Theorem 3.5. Suppose that𝑋 is a transient regular process with t.i.p. Then𝑋 has IP with characteristics (𝐼, ℎ, 𝑣) with 𝐼(𝑥) =
𝑥𝜌−𝛼(𝑥), ℎ(𝑥) = 𝜌(𝑥)1−(𝛽+𝑛)𝛼∕2 and 𝑣(𝑥) = (Jac(𝐼)(𝑥))−1𝜌(𝑥)2−𝑛𝛼 , where Jac(𝐼) is the modulus of the Jacobi determinant of 𝐼 .
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Moreover, if 𝑋 is the Doob 𝐻-transform of a regular process 𝑍 having IP with characteristics (𝐼, ℎ, 𝑣), then 𝑋 has IP with
characteristics 𝐼 and 𝑣, and excessive function 𝑍 (𝐻)∕𝐻 .

Proof. First suppose that the process 𝑋 is regular, so its semigroup has the form (3.3). We use the fact that if two transient
Markov processes have equal potentials 𝑈𝑋 = 𝑈𝑌 < ∞ then the processes 𝑋 and 𝑌 have the same law (compare with [30],
page 356 or [37], Theorem T8, page 205).

Remind that the function ℎ(𝑥) = 𝑥2−𝛿 is BES(𝛿)-excessive, see e.g. [3, Cor. 4.4]. This can also be explained by the fact that if
(𝑅𝑡, 𝑡 ≥ 0) is a Bessel process of dimension 𝛿 then

(
𝑅2−𝛿
𝑡
, 𝑡 ≥ 0

)
is a local martingale (it is a strict local martingale when 𝛿 > 2),

cf. [24].
Using condition (3.5), we see that the function ℎ(𝑥) = 𝜌(𝑥)1−(𝛽+𝑛)𝛼∕2 appearing in (3.6) is 𝑋-excessive. Thus the process

𝐼(𝑋) is a Doob ℎ-transform of the process 𝑋 when time-changed appropriately.
In the case where 𝑋 = 𝑍𝐻 is a Doob𝐻-transform of 𝑍 whose semigroup has the form (3.3), we use Proposition 2.13. □

Remark 3.6. A remarkable consequence of Theorem 3.5 is that it gives as a by-product the construction of new excessive
functions which are functions of 𝜌(𝑋) and not of 𝜃(𝑋). For example, for Wishart processes, the known harmonic functions are
in terms of det(𝑋) and not of Tr(𝑋), see [21] and Subsection 4.3 below.

In view of applications of Theorem 3.5, the aim of the next result is to give a sufficient condition for 𝑋 to be transient for
compact sets.

Proposition 3.7. Assume that 𝜙 satisfies

(a) 𝜙(𝑥, 𝑦∕𝑡) ≈ 𝑐1(𝑥, 𝑦)𝑡𝛾1(𝑥,𝑦)𝑒
− 𝑐2(𝑥,𝑦)

𝑡 as 𝑡→ 0;
(b) 𝜙(𝑥, 𝑦∕𝑡) ≈ 𝑐3(𝑥, 𝑦)𝑡𝛾2(𝑥,𝑦) as 𝑡 → ∞;

where 𝑐1, 𝑐2, 𝑐3 and 𝛾1, 𝛾2 are functions of 𝑥 and 𝑦. If

(1) 𝜌 ≥ 0;
(2) 𝜌(𝑥) + 𝜌(𝑦) − 2𝑐2(𝑥, 𝑦) > 0 for all 𝑥, 𝑦 ∈ 𝐸;
(3) 𝛾1(𝑥, 𝑦) > −1 + (𝑛+𝛽)𝛼

2 > 𝛾2(𝑥, 𝑦);

then 𝑋 is transient for compact sets.

Proof. We easily check that the integral for 𝑈𝑋(𝑥, 𝑦) converges if the hypotheses of the proposition are satisfied. □

3.3 Self-duality for processes with t.i.p.

Proposition 3.8. Suppose that 𝜙(𝑥, 𝑦) = 𝜙(𝑦, 𝑥) for 𝑥, 𝑦 ∈ 𝐸. Then the process 𝑋 is self-dual with respect to the measure

𝑚(𝑑𝑥) = 𝜃(𝑥)𝑑𝑥.

Proof. Formula (3.3) implies that the kernel

�̃�𝑡(𝑥, 𝑦) ∶= 𝑝𝑡(𝑥, 𝑦)𝜃(𝑥)

is symmetric, i.e. �̃�𝑡(𝑥, 𝑦) = �̃�𝑡(𝑦, 𝑥). It follows that for all 𝑡 ≥ 0 and bounded measurable functions 𝑓 , 𝑔 ∶ 𝐸 → ℝ+, we have

∫ 𝑓 (𝑥)𝔼𝑥(𝑔(𝑋𝑡))𝑚(𝑑𝑥) = ∫ 𝔼𝑥(𝑓 (𝑋𝑡))𝑔(𝑥)𝑚(𝑑𝑥).
□

By Proposition 3.8, all classical processes with t.i.p. considered in [29] and [35] are self-dual: Bessel processes and their
powers, Dunkl processes, Wishart processes, non-colliding particle systems (Dyson Brownian motion, non-colliding BESQ
particles).

Remark 3.9. Let 𝑛 ≥ 2 and let 𝑋 be a transient regular process with t.i.p., with non-symmetric function 𝜙. By Theorem 3.5,
𝑋 has an IP, whereas a DIP for 𝑋 is unknown. This observation, together with Remark 2.18 shows that in the theory of space
inversions of stochastic processes, both IP and DIP must be considered.
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4 APPLICATIONS

4.1 Free scaled power Bessel processes
Let 𝑅(𝜈) be a Bessel process with index 𝜈 > −1 and dimension 𝛿 = 2(𝜈 + 1). A time scaled power Bessel process is realized as((
𝑅
(𝜈)
𝜎2𝑡

)𝛼
, 𝑡 ≥ 0

)
, where 𝜎 > 0 and 𝛼 ≠ 0 are real numbers. Let 𝜈 and 𝜎 be vectors of real numbers such that 𝜎𝑖 > 0 and 𝜈𝑖 > −1

for all 𝑖 = 1, 2,… , 𝑛, and let 𝑅(𝜈1), 𝑅(𝜈2), … , 𝑅(𝜈𝑛) be independent Bessel processes of index 𝜈1, 𝜈2,… , 𝜈𝑛, respectively. We call
the process 𝑋 defined, for a fixed 𝑡 ≥ 0, by

𝑋𝑡 ∶=
((
𝑅
(𝜈1)
𝜎21 𝑡

)𝛼
,

(
𝑅
(𝜈2)
𝜎22 𝑡

)𝛼
,… ,

(
𝑅
(𝜈𝑛)
𝜎2𝑛 𝑡

)𝛼)
a free scaled power Bessel process with indices 𝜈, scaling parameters 𝜎 and power 𝛼, for short FSPBES(𝜈, 𝜎, 𝛼). If we denote
by 𝑞𝜈

𝑡
(𝑥, 𝑦) the density of the semi-group of a BES(𝜈) with respect to the Lebesgue measure, found in [41], then the densities of

a FSPBES(𝜈, 𝜎, 𝛼) are given by

𝑝𝑡(𝑥, 𝑦) =
𝑛∏
𝑖=1

(1∕𝛼)𝑦
1
𝛼
−1
𝑖
𝑞
𝜈𝑖

𝜎2
𝑖
𝑡

(
𝑥
1∕𝛼
𝑖
, 𝑦

1∕𝛼
𝑖

)
(4.1)

=
𝑛∏
𝑖=1

(1∕𝛼)𝑦
1
𝛼
−1
𝑖

𝑥
1∕𝛼
𝑖

𝜎2
𝑖
𝑡

(
𝑦𝑖

𝑥𝑖

)(𝜈𝑖+1)∕𝛼
𝐼𝜈𝑖

(
(𝑥𝑖𝑦𝑖)1∕𝛼

𝜎2
𝑖
𝑡

)
𝑒
−
𝑥
2∕𝛼
𝑖

+𝑦2∕𝛼
𝑖

2𝜎2
𝑖
𝑡 .

From (4.1) we read that 𝑝𝑡(𝑥, 𝑦) takes the form (3.3) with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜙(𝑥, 𝑦) =
𝑛∏
𝑖=1

𝐼𝜈𝑖

(
(𝑥𝑖𝑦𝑖)1∕𝛼

𝜎2
𝑖

)
((𝑥𝑖𝑦𝑖)1∕𝛼∕𝜎2𝑖 )𝜈𝑖

,

𝜌(𝑥) =
𝑛∑
𝑖=1
𝑥
2∕𝛼
𝑖

∕𝜎2
𝑖
,

𝜃(𝑦) = 1
𝛼𝑛(
∏𝑛
𝑖=1 𝜎𝑖)𝛼

𝑛∏
𝑖=1

(
𝑦𝑖|𝜎𝑖|𝛼
)2(1+𝜈𝑖)∕𝛼−1

.

(4.2)

It follows that the degree of homogeneity of 𝜃 is 𝛽 = 2
(
𝑛 +
∑𝑛
𝑖=1 𝜈𝑖

)
∕𝛼 − 𝑛. If 𝑋 is a FSPBES(𝜈, 𝜎, 𝛼) then clearly 𝜌1∕2(𝑋)

is a Bessel process of dimension 𝑛𝛿 = 2𝑛(𝜈 + 1), where 𝛿 =
(∑𝑛

1 𝛿𝑖
)
∕𝑛 and 𝜈 =

(∑𝑛
1 𝜈𝑖
)
∕𝑛. Note that with this notation 𝜈 =

𝛼

2𝑛 (𝛽 + 𝑛) − 1 and 𝛿 = 𝛼

𝑛
(𝛽 + 𝑛). We deduce that 𝜌(𝑋) is point-recurrent if and only if 0 < 2𝑛(𝜈 + 1) < 2, i.e., 0 < 𝑛𝛿 < 2.

Interestingly, the distribution of 𝑋𝑡, for a fixed 𝑡 > 0, depends on the vector 𝜈 only through the mean 𝜈. Furthermore, we can
recover the case 𝜎1 ≠ 1 from the case 𝜎1 = 1 by using the scaling property of Bessel processes. In other words, for a fixed time
𝑡 > 0, the class of all free power scaled Bessel processes yields an (𝑛 + 1)-parameter family of distributions.

Corollary 4.1. Let 𝑋 be a FSPBES(𝜈, 𝜎, 𝛼). If 𝑛𝛿 = 2𝑛(𝜈 + 1) > 2 then 𝑋 is transient and has the Inversion Property with
characteristics

𝐼(𝑥) = 𝑥

𝜌𝛼(𝑥)
, ℎ(𝑥) = 𝜌1−

𝑛𝛿

2 (𝑥), 𝑣(𝑥) = 𝜌(𝑥)2,

where 𝜌(𝑥) is given by (4.2).

Proof. We quote from ([36], p. 136) that the modified Bessel function of the first kind 𝐼𝜈 has the asymptotics, for 𝜈 ≥ 0,

𝐼𝜈(𝑥) ∼
𝑥𝜈

2𝜈Γ(1 + 𝜈)
as 𝑥→ 0,

and

𝐼𝜈(𝑥) ∼
𝑒𝑥√
2𝜋𝑥

as 𝑥 → ∞.
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From the above and (4.1) it follows that

𝑝𝑡(𝑥, 𝑦) ∼ 𝑐(𝑥, 𝑦)
𝑡𝑛(1+𝜈)

as 𝑡→ ∞,

and

𝑝𝑡(𝑥, 𝑦) ∼ 𝑐(𝑥, 𝑦)𝑒−
𝜌(𝑥)+𝜌(𝑦)

2𝑡

𝑡𝑛∕2
as 𝑡→ 0,

hence if 𝑛𝛿 = 2𝑛(𝜈 + 1) > 2, then ∫ ∞
0 𝑝𝑡(𝑥, 𝑦) 𝑑𝑡 <∞ and the process is transient. The process 𝜌1∕2(𝑋) is a Bessel process of

dimension 2𝑛(𝜈 + 1) = (𝛽 + 𝑛)𝛼, so the condition (3.5) is satisfied and we can apply Theorem 3.5.
We compute the Jacobian Jac(𝐼)(𝑥) = −𝜌(𝑥)−𝑛𝛼 similarly as the Jacobian of the spherical inversion 𝑥 → 𝑥∕‖𝑥‖2 and we get

𝑣(𝑥) = |(Jac(𝐼)(𝑥))−1|𝜌(𝑥)2−𝑛𝛼 = 𝜌(𝑥)2. □

4.2 Gaussian Ensembles
Stochastic Gaussian Orthogonal Ensemble GOE(𝑚) is an important class of processes with values in the space of real symmetric
matrices 𝑆𝑦𝑚(𝑚,ℝ) which have t.i.p. and IP. Recall that

𝑌𝑡 =
𝑁𝑡 +𝑁𝑇

𝑡

2
, 𝑡 ≥ 0,

where (𝑁𝑡, 𝑡 ≥ 0) is a Brownian 𝑚 × 𝑚 matrix. Thus the upper triangular processes (𝑌𝑖𝑗)1≤𝑖≤𝑗≤𝑚 of 𝑌 are independent, 𝑌𝑖𝑖 are

Brownian motions and 𝑌𝑖𝑗 , 𝑖 < 𝑗, are Brownian motions dilated by 1√
2
.

Let𝑀 ∈ 𝑆𝑦𝑚(𝑚,ℝ). We denote by 𝐱 ∈ ℝ𝑚 the diagonal elements of𝑀 and by 𝐲 ∈ ℝ𝑚(𝑚−1)∕2 the terms
(
𝑀𝑖𝑗

)
1≤𝑖<𝑗≤𝑚 above

the diagonal of𝑀 . We denote by𝑀(𝐱, 𝐲) such a matrix𝑀 .
We have (𝐱, 𝐲) ∈ ℝ𝑚(𝑚+1)∕2 and the map (𝐱, 𝐲) →𝑀(𝐱, 𝐲) is an isomorphism between ℝ𝑚(𝑚+1)∕2 and S𝑦𝑚(𝑚,ℝ).
Let Φ(𝐱, 𝐲) =𝑀

(
𝐱, 𝐲∕

√
2
)
. The map Φ is a bijection of ℝ𝑚(𝑚+1)∕2 and S𝑦𝑚(𝑚,ℝ), such that the image of the Brownian

Motion 𝐵 on ℝ𝑚(𝑚+1)∕2 is equal to 𝑌 . Proposition 2.12 implies that 𝑌 has IP. More precisely, we obtain the following

Corollary 4.2. The Stochastic Gaussian Orthogonal Ensemble GOE(𝑚) has IP with characteristics:

𝐼(𝑀) = 𝑀‖𝑀‖2 , ℎ(𝑀) = ‖𝑀‖2−𝑛, 𝑣(𝑀) = ‖𝑀‖4,
where ‖𝑀‖ =√∑1≤𝑖,𝑗≤𝑚𝑀2

𝑖𝑗
.

On the other hand, the time inversion property of 𝑌 follows from the expression of the transition semigroup of 𝑌 which is
straightforward. Theorem 3.5 provides another proof of Corollary 4.2.

Analogously, IP and t.i.p. hold true for Gaussian Unitary and Symplectic Ensembles.

4.3 Wishart Processes
Now we look at matrix squared Bessel processes which are also known as Wishart processes. Let 𝑆+

𝑚
be the set of 𝑚 × 𝑚 real

nonnegative definite matrices. 𝑋 is said to be a Wishart process with shape parameter 𝛿, if it satisfies the stochastic differential
equation

𝑑𝑋𝑡 =
√
𝑋𝑡𝑑𝐵𝑡 + 𝑑𝐵∗

𝑡

√
𝑋𝑡 + 𝛿𝐼𝑚𝑑𝑡, 𝑋0 = 𝑥, 𝛿 ∈ {1, 2,… , 𝑚 − 2} ∪ [𝑚 − 1,∞),

where 𝐵 is an 𝑚 × 𝑚 Brownian matrix whose entries are independent linear Brownian motions, and 𝐼𝑚 is the 𝑚 × 𝑚 identity
matrix. Notice that when 𝛿 is a positive integer, the Wishart process is the process 𝑁∗𝑁 where 𝑁 is a 𝛿 × 𝑚 Brownian matrix
process and𝑁∗ is the transpose of𝑁 . We refer to [21] for Wishart processes.

In [29] and [35] it was shown that these processes have the t.i.p. The semi-group of 𝑋 is absolutely continuous with respect
to the Lebesgue measure, i.e. 𝑑𝑦 =

∏
𝑖≤𝑗 𝑑𝑦𝑖𝑗 , with transition probability densities

𝑞𝛿(𝑡, 𝑥, 𝑦) =
1

(2𝑡)𝛿𝑚∕2
1

Γ𝑚(𝛿∕2)
𝑒
− 1

2𝑡Tr(𝑥+𝑦) (det(𝑦))(𝛿−𝑚−1)∕2 0𝐹1

(
𝛿

2
,
𝑥𝑦

4𝑡2

)
,
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for 𝑥, 𝑦 ∈ 𝑆+
𝑚

, where Γ𝑚 is the multivariate gamma function and 0𝐹1(⋅, ⋅) is the matrix hypergeometric function. In particular, we

have 𝜌(𝑥) = Tr(𝑥), 𝛼 = 2 (𝑋 is self-similar with index 1) and 𝛽 = 1
2𝑚(𝛿 − 𝑚 − 1). Observe that, by Proposition 3.8, the Wishart

process is self-dual with respect to the Riesz measure

𝜃(𝑦)𝑑𝑦 = (det(𝑦))(𝛿−𝑚−1)∕2 𝑑𝑦, 𝑦 ∈ 𝑆+
𝑚
,

generating the Wishart family of laws of 𝑋 as a natural exponential family. Next, 𝑋 is transient for 𝑚 ≥ 3 and for 𝑚 = 2 and
𝛿 ≥ 2. For a proof of this fact, we use the s.d.e. of the trace of 𝑋 given by

𝑑(Tr(𝑋𝑡)) = 2
√
Tr(𝑋𝑡)𝑑𝑊𝑡 + 𝑚𝛿𝑑𝑡.

Thus, Tr(𝑋) is a 1-dimensional squared Bessel process of dimension𝑚𝛿. Since 𝛿 ∈ {1,… , 𝑚 − 2} ∪ [𝑚 − 1,∞), we have 𝛿 ≥ 1,
so𝑚𝛿 ≥ 3 unless, possibly the case𝑚 = 2 and 𝛿 = 1. Thus, for𝑚 ≥ 3 and for𝑚 = 2 and 𝛿 ≥ 2, we have ‖𝑋𝑡‖1 = ∑𝑖,𝑗 |(𝑋𝑡)𝑖𝑗| ≥
Tr(𝑋𝑡) → ∞ as 𝑡 → ∞ and the process 𝑋 is transient.

Corollary 4.3. Let 𝑋 be a Wishart process on 𝑆+
𝑚

, with shape parameter 𝛿. The process 𝑋 has the IP property with character-
istics

𝐼(𝑥) = 𝑥

(Tr(𝑥))2
, ℎ(𝑥) = (Tr(𝑥))1−

𝛿𝑚

2 , 𝑣(𝑥) = 1
𝑚 − 1

(Tr(𝑥))2.

The function ℎ(𝑥) = (Tr(𝑥))1−
𝛿𝑚

2 is 𝑋-excessive.

Proof. In the transient case we apply Theorem 3.5. Condition (3.5) is fulfilled as 𝜌(𝑋) = Tr(𝑋) is a 1-dimensional squared Bessel
process of dimension 𝑚𝛿= (𝑛 + 𝛽)𝛼, where 𝑛 = 𝑚(𝑚 + 1)∕2. For the time change function, the computation of the Jacobian of
𝐼(𝑋) is crucial. It is equal to (𝑚 − 1)(Tr(𝑋))−𝑚(𝑚+1).

In the case 𝑚 = 2 and 𝛿 = 1 it is easy to see that the process 𝑋 is not transient, e.g. by checking that the integral
∫ ∞
0 𝑞𝛿(𝑡, 0, 𝑦) 𝑑𝑡 = ∞. Nevertheless, the IP holds with the same characteristics as above. In order to prove this we can use

the following description of the generator of𝑋 found in [13]. If 𝑓 and 𝐹 are 𝐶2 functions on, respectively, +
2 and on (1, 2),

the space of 1 × 2 real matrices, such that for all 𝑦 ∈ (1, 2) we have 𝐹 (𝑦) = 𝑓 (𝑦∗𝑦), then 𝐿𝑓 = 1
2Δ𝑓 . Thus, the proof of the

IP works like the one for the 2-dimensional Brownian motion, see [45]. □

4.4 Dyson Brownian Motion
Let𝑋1 ≤ 𝑋2 ≤ ⋯ ≤ 𝑋𝑛 be the ordered sequence of the eigenvalues of a Hermitian Brownian motion. Dyson showed in [23] that
the process (𝑋1,… , 𝑋𝑛) has the same distribution as 𝑛 independent real-valued Brownian motions conditioned never to collide.
Hence its semigroup densities 𝑝𝑡(𝑥, 𝑦) can be described as follows. Let 𝑞𝑡 be the probability transition function of a real-valued
Brownian motion. We have

𝑝𝑡(𝑥, 𝑦) =
𝐻(𝑦)
𝐻(𝑥)

det
[
𝑞𝑡
(
𝑥𝑖, 𝑦𝑗

)]
, 𝑥, 𝑦 ∈ ℝ𝑛

<
, (4.3)

where

𝐻(𝑥) =
𝑛∏
𝑖<𝑗

(𝑥𝑗 − 𝑥𝑖) and ℝ𝑛
<
= {𝑥 ∈ ℝ𝑛; 𝑥1 < 𝑥2 <⋯ < 𝑥𝑛}.

Following Lawi [35], 𝑋 has the time inversion property. This follows from the fact that (4.3) can be written in the form (3.3)
with

𝜃 = (2𝜋)𝑛∕2𝐻(𝑦)2, 𝜌(𝑥) = ‖𝑥‖2, 𝜙(𝑥, 𝑦) =
det[𝑒𝑥𝑖𝑦𝑗 ]𝑛

𝑖,𝑗=1

𝐻(𝑥)𝐻(𝑦)
.

Corollary 4.4. The 𝑛-dimensional Dyson Brownian Motion has IP with characteristics:
𝐼 is the spherical inversion on ℝ𝑛

<
, ℎ(𝑥) = ‖𝑥‖2−𝑛2 and 𝑣(𝑥) = ‖𝑥‖4.

Proof. We compute (𝑛 + 𝛽)𝛼 = 𝑛2. Applying Theorem 3.5 to the Dyson Brownian Motion will be justified if we prove that‖𝑋‖2 is BESQ
(
𝑛2
)
. This can be shown by writing the SDE for ‖𝑋‖2, using the SDEs for 𝑋𝑖's and the Itô formula.
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Another proof consists in observing that 𝐻 is harmonic for the 𝑛-dimensional Brownian Motion 𝐵 killed when it exits the
set ℝ𝑛

<
. It is also used in the construction of a Dyson Brownian Motion as a conditioned Brownian motion. An application of

Proposition 2.13 yields the corollary. □

4.5 Non-colliding Squared Bessel Particles
Let 𝑋1 ≤ 𝑋2 ≤ ⋯ ≤ 𝑋𝑛 be the ordered sequence of the eigenvalues of a complex Wishart process, called a Laguerre process.
König and O'Connell showed in [33] that the process (𝑋1,… , 𝑋𝑛) has the same distribution as 𝑛 independent BESQ(𝛿) processes
on ℝ+ conditioned never to collide, 𝛿 > 0. Hence its semigroup densities 𝑝𝑡(𝑥, 𝑦) can be described as follows. Let 𝑞𝑡 be the
probability transition function of a BESQ(𝛿) process. We have

𝑝𝑡(𝑥, 𝑦) =
𝐻(𝑦)
𝐻(𝑥)

det
[
𝑞𝑡
(
𝑥𝑖, 𝑦𝑗

)]
, 𝑥, 𝑦 ∈ ℝ+𝑛

<
, (4.4)

where𝐻 is, as in the previous example, the Vandermonde function and𝐸 = ℝ+𝑛
< = {𝑥 ∈ ℝ+𝑛 ∶ 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛}. Lawi [35]

observed that 𝑋 has the time inversion property.
The same two reasonings presented for the Dyson Brownian Motion can be applied, in order to prove that𝑋 has IP. However,

the first reasoning, using Theorem 3.5 and formula (4.4), applies only in the transient case 𝛿 > 2.
Let us present the second reasoning where we use the results of the Section 2.7. First, we prove the following corollary.

Corollary 4.5. The 𝑛-dimensional free Squared Bessel process 𝑌 =
(
𝑌 (1),… , 𝑌 (𝑛)) where the processes 𝑌 (𝑖) are independent

Squared Bessel processes of dimension 𝛿, has IP with characteristics 𝐼(𝑥) = 𝑥∕(𝑥1 +⋯ + 𝑥𝑛)2, ℎ(𝑥) =
(∑𝑛

𝑖=1 𝑥𝑖
)1−𝑛𝛿∕2 and

𝑣(𝑥) =
(∑𝑛

𝑖=1 𝑥𝑖
)2.

Proof. It is an application of the fact that a free Bessel process has IP, as proved in [3, Corollary 4] , and Proposition 2.12. We
use the bijection Φ(𝑥1,… , 𝑥𝑑) =

(
𝑥21,… , 𝑥2

𝑑

)
. □

Next, we apply Proposition 2.13, with𝐻 as above, in order to get the following result.

Corollary 4.6. Let 𝑋 = (𝑋1,… , 𝑋𝑛) be 𝑛 independent BESQ(𝛿) processes on ℝ+ conditioned never to collide, 𝛿 > 0. The
process 𝑋 has IP with characteristics:

𝐼(𝑥) = 𝑥∕(𝑥1 +⋯ + 𝑥𝑛)2, ℎ̃(𝑥) =

(
𝑛∑
𝑖=1
𝑥𝑖

)1−𝑛𝛿∕2−𝑛(𝑛−1)

, 𝑣(𝑥) =

(
𝑛∑
𝑖=1
𝑥𝑖

)2

.

4.6 Dunkl processes
Let 𝑅 be a finite root system on ℝ𝑛. If 𝛼 ∈ 𝑅, then 𝜎𝛼 denotes the symmetry with respect to the hyperplane {𝛼 = 0}. The Dunkl

derivatives are defined by 𝑇𝑖𝑓 (𝑥) ∶= 𝜕𝑖𝑓 (𝑥) +
∑
𝛼∈𝑅+ 𝑘(𝛼)𝛼𝑖

𝑓 (𝑥)−𝑓 (𝜎𝛼𝑥)
𝛼⋅𝑥

, 𝑖 = 1, 2,… , 𝑛. The generator of a Dunkl process 𝑋 is
1
2Δ𝑘 where Δ𝑘 =

∑𝑛
𝑖=1 𝑇

2
𝑖

is the Dunkl Laplacian on ℝ𝑛.
It was proven in [3, Corollary 9] that any Dunkl process 𝑋𝑡 has the IP with characteristics 𝐼𝑠𝑝ℎ, ℎ(𝑥) = ‖𝑥‖2−𝑛−2𝛾 , where

𝛾 = 1
2
∑
𝛼∈𝑅 𝑘(𝛼), and 𝑣(𝑥) = ‖𝑥‖4.

It is known [17,29] that Dunkl processes are regular processes with t.i.p. Thus, Theorem 3.5 provides an alternative method
of proof of IP for transient Dunkl processes, characterized in [28]. By Theorem 2.5, we obtain the following corollary.

Corollary 4.7. Let 𝑋 be a Dunkl process on ℝ𝑛 and let ℎ(𝑥) = ‖𝑥‖2−𝑛−2𝛾 . The Kelvin transform 𝑓 = ℎ ⋅ 𝑓 ◦ 𝐼𝑠𝑝ℎ preserves
𝑋-harmonic, regular 𝑋-harmonic and 𝑋-superharmonic functions.

In [18] the equivalence between operator-harmonicity Δ𝑘𝑢 = 0 and 𝑋-harmonicity of 𝑢 is announced and Kelvin transform
for 𝑋-harmonic functions could be deduced from [31].

4.7 Hyperbolic Brownian Motion
Let us recall some basic information about the ball realization of real hyperbolic spaces (cf. [32, Ch. I. 4A p. 152], [40]). The
ball model of the real hyperbolic space of dimension 𝑛 is the 𝑛-dimensional Euclidean ball 𝔻𝑛 = {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖ < 1} equipped
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with the Riemannian metric d𝑠2 = 4‖𝑑𝑥‖2∕(1 − ‖𝑥‖2)2. The spherical coordinates on 𝔻𝑛 are defined by 𝑥 = 𝜎 tanh 𝑟2 where

𝑟 > 0 and 𝜎 ∈ 𝑆𝑛−1 ⊂ ℝ𝑛 are unique. Then the Laplace–Beltrami operator on 𝔻𝑛 is given by

𝐿𝑓 (𝑥) = 𝜕
2𝑓

𝜕𝑟2
(𝑥) + (𝑛 − 1) coth 𝑟𝜕𝑓

𝜕𝑟
(𝑥) + 1

sinh2 𝑟
Δ𝑆𝑛−1𝑓 (𝑥),

where Δ𝑆𝑛−1 is the spherical Laplacian on the sphere 𝑆𝑛−1 ⊂ ℝ𝑛.
Let 𝑋 be the 𝑛-dimensional Hyperbolic Brownian Motion on 𝔻𝑛, defined as a diffusion generated by 1

2𝐿 (cf. [40] and the
references therein). Define a new process 𝑌 by setting 𝑌𝑡 ∶= 𝛿(𝑋𝑡), 𝑡 ≥ 0, where 𝛿(𝑥) is the hyperbolic distance between 𝑥 ∈ 𝔻𝑛
and the ball center 𝟎. The process 𝑌 is the 𝑛-dimensional Hyperbolic Bessel process on (0,∞). According to [2], the process 𝑌
has the Inversion Property, with characteristics (𝐼0, ℎ0, 𝑣0) that can be determined by [2, Theorem 1]. It is natural to conjecture
that the Hyperbolic Brownian Motion 𝑋 has IP with characteristics (𝐼, ℎ, 𝑣0), where

𝐼(𝑥) = 𝜎 tanh
𝐼0(𝑟)
2

and ℎ(𝑥) = ℎ0(𝑟).

When 𝑛 = 3, by [2, Section 5.2], we have 𝐼0(𝑟) =
1
2 ln coth 𝑟, ℎ0(𝑟) = coth 𝑟 − 1 and 𝑣0(𝑟) = 2 cosh 𝑟 sinh 𝑟. If the Hyperbolic

Brownian Motion 𝑋𝑡 had IP with the involution 𝐼 and the excessive function ℎ, then, by Theorem 2.5 and Proposition 2.24, if
𝐿𝑓 = 0 then 𝐿(ℎ𝑓 ◦ 𝐼) = 0. By a direct but tedious calculation of 𝐿(ℎ𝑓 ◦ 𝐼) in spherical coordinates, we see that there exist
continuous functions 𝑓 such that 𝐿𝑓 = 0 but 𝐿(ℎ𝑓 ◦ 𝐼) ≠ 0, so 𝑋 does not have IP with characteristics 𝐼 and ℎ.

To our knowledge, no inversion property and Kelvin transform are known for the Hyperbolic Brownian Motion. We believe
that this question was first raised by T. Byczkowski about ten years ago, while he was working on potential theory of the
Hyperbolic Brownian Motion [14].
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