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Summary

� Quantitative plant disease resistance is believed to be more durable than qualitative resis-

tance, since it exerts less selective pressure on the pathogens. However, the process of pro-

gressive pathogen adaptation to quantitative resistance is poorly understood, which makes it

difficult to predict its durability or to derive principles for its sustainable deployment. Here, we

study the dynamics of pathogen adaptation in response to quantitative plant resistance affect-

ing pathogen reproduction rate and its colonizing capacity.
� We developed a stochastic model for the continuous evolution of a pathogen population

within a quantitatively resistant host. We assumed that pathogen can adapt to a host by the

progressive restoration of reproduction rate or of colonizing capacity, or of both.
� Our model suggests that a combination of quantitative trait loci (QTLs) affecting distinct

pathogen traits was more durable if the evolution of repressed traits was antagonistic.

Otherwise, quantitative resistance that depressed only pathogen reproduction was more

durable.
� In order to decelerate the progressive pathogen adaptation, QTLs that decrease the patho-

gen’s maximum capacity to colonize must be combined with QTLs that decrease the spore

production per lesion or the infection efficiency or that increase the latent period. Our theo-

retical framework can help breeders to develop principles for sustainable deployment of

QTLs.

Introduction

The use of resistant disease cultivars in agro-ecosystems has a con-
siderable effect on the evolutionary dynamics of pathogens
(McDonald & Linde, 2002; Mundt et al., 2002). Two types of
resistance have historically been distinguished: qualitative and
quantitative resistance (Ainsworth, 1981). Qualitative resistance
is based on gene-for-gene relationships subjected to relatively
simple genetic control, and it renders a cultivar immune to dis-
ease (Flor, 1971; Dangl & Jones, 2001). The mechanisms of the
rapid adaptation of the pathogen to this type of resistance, and
the evolutionary consequences of its deployment, have already
been studied in detail (van den Bosch & Gilligan, 2003; Bourget
et al., 2013). By contrast, the genetic mechanisms underlying
pathogen adaptation to quantitative plant resistance, which
reduces the level of disease rather than conferring immunity
(Young, 1996), are poorly understood. It has been shown that
quantitative resistance in a host population can be associated with
the presence of quantitative trait loci, QTLs, in its genome
(Young, 1996; St.Clair, 2010). QTLs can be overcome by a swift
pathogen adaptation like a qualitative resistance (Lehman &
Shaner, 1996; Moury et al., 2004; Palloix et al., 2009). In this

case pathogen adaptation can be described by existing models
(Bourget et al., 2013). Here, we consider a progressive pathogen
adaptation when the polygenic structure is overcome by multiple
successive genetic changes in the pathogen population
(McDonald & Linde, 2002; Poland et al., 2009) that can make
quantitative resistance more durable (Andrivon et al., 2007;
Palloix et al., 2009; Brun et al., 2010). Moreover, it has been
shown that quantitative resistance can depress distinct life-history
traits of the pathogen population, such as the latent period, infec-
tion efficiency, lesion size or the spore production rate (Pariaud
et al., 2009; Azzimonti, 2012; Lannou, 2012; van den Berg et al.,
2013). However, no study, whether theoretical or empirical, has
demonstrated how the ways of restoring the various pathogen
traits could drive the speed of pathogen adaptation. The lack of
empirical studies can be explained by the fact that observation of
the progressive adaptation by the pathogen to quantitative resis-
tance is a labor- and time-consuming process. Indeed, the corre-
sponding pathogen populations can display a distribution of
pathogenicity that may vary considerably from year to year as a
result of the strong genotype-by-environment interactions that
occur for quantitative characters in both the plant and the patho-
gen (McDonald & Linde, 2002; Caffier et al., 2014). Thus, to be

� 2015 The Authors

New Phytologist� 2015 New Phytologist Trust

New Phytologist (2015) 1
www.newphytologist.com

Research



able to predict the durability of quantitative resistance, we need a
theoretical approach to explore the process of progressive patho-
gen adaptation driven by the stochastic restoration of depressed
life-traits.

In recent years, growing attention has been paid to approaches
in which epidemiology and evolutionary ecology are merged to
study the evolution of plant pathogens in response to various dif-
ferent deployments of quantitative plant resistance. For instance,
Lehman & Shaner (1996) have demonstrated that quantitative
resistance will select pathogens with a shorter latent period. Using
a deterministic model, Iacono et al. (2012) have shown that the
increase in the proportion of hosts carrying quantitative resistance
increases the gain in the duration of the healthy canopy area. They
have also shown that quantitative resistance that reduces the infec-
tion efficiency gives a greater gain than quantitative resistance that
reduces the sporulation rate. Theoretical approaches investigating
the evolutionary consequences of partially effective (imperfect)
vaccines have focused on two main questions: how an imperfect
vaccine selects for pathogens that are able to evade the protective
effects of the vaccine (van Boven et al., 2005), and how an imper-
fect vaccine causes evolutionary changes in pathogen virulence
defined as host mortality caused by the pathogen (Gandon et al.,
2001). Recently, Gandon & Day (2007) have developed a model
by which to consider a set of pathogen strains that arise and spread
in the face of vaccination and to classify them by their life-history
parameters, rather than to distinguish only escape and virulent
mutants within the pathogen population. However, none of these
models has provided a realistic description of continuous patho-
gen adaptation within a host carrying quantitative resistance.

The objective of this paper is to study the dynamics of continu-
ous pathogen adaptation to a quantitatively resistant host. To do
this, we adapted and analyzed a stochastic model (Champagnat
et al., 2006) that describes the birth, mutation, and death
processes of pathogen lesions on a quantitatively resistant host,
underlying the dynamics of the pathogen population. The model
made it possible to classify pathogen strains by their adaptation
state and to track the adaptation dynamics of strains through the
progressive stochastic changes in evolution coefficients mimick-
ing the restoration of the pathogens life-history parameters that
have been depressed by quantitative resistance. By numerical sim-
ulations, we studied pathogen adaptation dynamics in response
to different impacts of quantitative resistance on distinct patho-
gen life-history parameters. Our model suggested that a combina-
tion of QTLs affecting distinct pathogen traits was durable, if the
restoration process of repressed traits was antagonistic or inde-
pendent. Otherwise, quantitative resistance that depressed patho-
gen reproduction alone was more durable. We discuss strategies
for the judicious use of QTLs in plant breeding from the view-
point of potential pathogen adaptation.

Description

Model overview

Our model describes the evolutionary dynamics of a polycyclic
disease on an individual host. We consider the pathogen

population as a set of lesions that can be produced by genetically
different strains. We assume that each strain interacting with an
individual host is genetically characterized by two quantitative
traits of pathogenicity: the reproduction rate, that is the number
of lesions produced by a lesion of this strain per unit of time,
and the colonizing capacity, that is the maximum number of
lesions of this strain that can survive simultaneously on a given
host surface. The reproduction rate combines the spore produc-
tion per lesion, the infection efficiency and the latent period.
The magnitudes of both the reproduction rate of the pathogen
and its colonizing capacity depend on the pathogen characteris-
tics, the level of host resistance as well as host-pathogen interac-
tions (Lannou, 2012). Despite this fact, for the sake of
simplicity, hereinafter we refer to pathogen reproduction rate
and its colonizing capacity as pathogen traits, since we assume
that only the pathogen population evolves and the host surface
exposed to infection is fixed.

We assume that on a given susceptible host, the reproduc-
tion rate of each lesion is r, and the maximum number of
lesions that can potentially colonize the host is K. If the path-
ogen attacks a quantitatively resistant host, the host resistance
depresses pathogen traits to some extent. Thus, on a quantita-
tively resistant host, the pathogen reproduction rate is reduced
to br r � r and its colonizing capacity is reduced to bK K �K ,
where br ; bK 2�0; 1�. As is easy to see, the initial values of br
and bK specify the resistance level of the host. We assume that
the pathogen is able to adapt to the host resistance by a pro-
gressive restoration of the depressed traits to the maximum val-
ues, r and K, corresponding to a susceptible host. When
depressed pathogen traits attain the maximum values, the
quantitative host resistance is considered to be completely
eroded or overcome. In our model, the evolution of pathogen
traits on a quantitatively resistant host is assumed to be driven
by stochastic mutations and selection. We assume that the
lesions have the same size and that this size is constant. Thus,
an increase in the colonizing capacity, bK K , leads to the
extension of the infected host surface. We designate br and
bK as evolution coefficients of pathogen traits, since whether
they are raised or lowered by stochastic mutations, they drive
the evolution of the reproduction rate and colonizing capacity,
respectively. Thus, the values of evolution coefficients describe
the adaptation state of a pathogen lesion. The higher the val-
ues of br and bK , the closer the abilities of the pathogen to
those on a susceptible host and consequently the pathogen
strain becomes more adapted to a partially resistant host. The
emergence of new pathogen strains with different pathogen
traits, br r and bK K , leads to a diversification of the pathogen
population and, thereby, to inter-strain competition and selec-
tion.

Individual-based stochastic model for progressive pathogen
adaptation

Our model is an adjustment of the theoretical framework of
Champagnat et al. (2006) based on Markov chains, which cap-
tures stochastic adaptive dynamics influenced by a continuous
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trait, as in the case of continuous pathogen adaptation to quanti-
tative host resistance. Being individual-based, our model makes it
possible to follow the adaptation state of each lesion and the sto-
chastic dynamics of the number of lesions of each pathogen strain
infecting an individual host carrying quantitative resistance.
Here, the strain is a set of lesions having the same adaptation
state. Let Inðt Þ be a random variable for the number of pathogen
lesions making up the nth strain at time t. Thus,

I ðt Þ ¼ PN ðt Þ

n¼ 1

Inðt Þ is a random variable for population size, that is

the total number of pathogen lesions on the host at time t, where
N(t) is the total number of strains in the pathogen population.
Each lesion, i 2 [1, I(t)], is characterized by a vector of adaptation

state bi~ ¼ ðbir ; biK Þ2�0; 1�2, where bir and biK are the evolution

coefficients of traits r and K, respectively. The dynamics of the
number of lesions of the nth strain, Inðt Þ, are driven by three
major processes: birth, death and mutation. These stochastic pro-
cesses increase or decrease the variable by one. The transition
from one state of the variable Inðt Þ to another Inðt Þ � 1 at the
moment of time t is driven by transition functions (Nair &
Pollett, 1993; Allen, 2003). For each lesion i with evolution

vector bi~, we define the birth transition function without muta-

tion, kðbi~Þ, the death transition function due to competition,

lðbi~Þ, and the birth transition function with mutation cðbi~Þ :

kðbi~Þ ¼ bir rð1� xÞ

lðbi~Þ ¼ bir r
biK K

PI ðt Þ
j¼1

ðbjrþbjK Þ

birþbiK
� 1

0
BB@

1
CCA;

cðbi~Þ ¼ bir rx

8>>>>>>><
>>>>>>>:

Eqn 1

where x is the probability for a lesion to create a mutant lesion
generating a new strain. The product of the pathogen reproduc-
tion rate, bir r , and the probability of not mutating, (1�x), gives

us the birth transition function of lesion i, kðbi~Þ, while with the
probability of mutating, x, it gives us its mutation function,

cðbi~Þ. The death function is based on the Lotka–Volterra equa-
tion (Otto & Day, 2007), where the competition between two
lesions, i and j, is determined by the ratio between their mean

evolution coefficients ðbjr þ bjK Þ=ðbir þ biK Þ, while the coloniz-
ing capacity of lesion i is biK K . The competition between patho-

gen strains is driven by the overall adaptation state of pathogen
lesions rather than by br only, since we assume that both traits

take part in strain selection. The term bir r of the death rate leads

to equal birth and death rates, when all lesions have the same evo-
lution coefficients and the number of lesions reaches its maxi-

mum, biK K . Table 1 summarizes the variables and parameters of

the model.
Despite the fact that our model is continuous in time, for

numerical simulations we used time discretization with random
step, tx . We assume that at time t þ tx , only one of the events

birth, death or mutation, can occur. To determine the time step
tx and what event happens to what pathogen lesion, we generate
for each lesion i 2 [1, I(t)] three independent random numbers

from the exponential distributions with parameters kðbi~Þ, lðbi~Þ,
cðbi~Þ, corresponding to birth, death and mutation events,
respectively. Then, tx becomes the smallest random number
among 3I(t) generated ones. Note that tx follows an exponential

distribution with parameter
PI ðt Þ
i ¼ 0

kðbi~Þ þ lðbi~Þ þ cðbi~Þ. We

also memorize the event and number of lesion i corresponding to
tx . Thus, the time advances to t þ tx and the corresponding
event happens for pathogen lesion i.

If a birth event happens for lesion i with evolution vector
bi~, then this lesion produces a new lesion with the same evolu-
tion coefficients, ðbir ; biK Þ. If a death event happens for lesion
i, this lesion dies because of the competition with the other
lesions. If a mutation event happens for lesion i, a new lesion
corresponding to a genetically distinct strain appears with a
new evolution coefficient bi~ þ z~ ¼ ðbir þ zr ; b

i
K þ zkÞ,

where random z~ ¼ ðzr ; zkÞ is determined according to scenar-
ios of pathogen adaptation, described later in the Scenarios of

Table 1 Definition of variables and parameters used to model pathogen
continuous adaptive dynamics

Name Value Description

InðtÞ N Number of lesions of strain n on the host
at time t

I(t) N Total number of lesions on the host at
time t

N(t) N Total number of strains at time t
r {0.5, 1, 2, 3} Pathogen reproduction rate on a

susceptible host
K {100, 500,

1000, 2000}
Pathogen colonizing capacity on a
susceptible host

bir [0; 1] Evolution coefficient of trait r of
pathogen lesion i at time t

biK [0; 1] Evolution coefficient of trait K of
pathogen lesion i at time t

bi~ ¼ ðbir ; biKÞ X ¼ ½0; 1�2 Evolution vector of pathogen lesion i

at time t
x 0.05 Mutation probability of a pathogen

lesion
z~ ¼ ðzr; zKÞ X Increment of the evolution coefficient
b {0.1, 0.2, 0.3} Maximum rise or fall of the evolution

coefficient, induced by a mutation
tky R Time of the yth event in the simulation

run k
�ty R Mean time of the yth event over

1000 runs
IkðtkyÞ N Size of the pathogen population

at time tky in the simulation run k
�Ið�tyÞ N Mean size of the pathogen population

at time t over 1000 runs
�bks ðtkyÞ [0; 1] Evolution coefficient of trait s2 {r, K}

of the run k at time tky
��bsð�tyÞ [0; 1] Mean evolution coefficient of trait

s2 {r, K} at time �ty over 1000 runs
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pathogen adaptation section. Then, we again generate 3I(t)
random numbers and repeat the iterations listed earlier. The
cycle is repeated until the convergence of one of the evolution
coefficients, bir or biK , to 1. Fig. 1 summarizes the behavior of
the model in terms of the transitions possible in a small time
interval, tx .

Scenarios of pathogen adaptation

Let us consider five different scenarios of pathogen adaptation.
Recall that the adaptation process is driven by random evolution
coefficients. The distribution of evolution coefficients seems to
be relatively tightly distributed around the initial coefficients
(Martin & Lenormand, 2006; Sanju�an, 2010). Thus, for all the
adaptation scenarios, we considered a uniform mutation law that
truncates bi~ þ z~ ¼ ðbir þ zr ; b

i
K þ zK Þ in order to keep the

evolution coefficients within �0; 1�2. This means that after a
mutant birth, when picking mutant coefficients bir þ zr or
biK þ zK [ 1 (or bir þ zr or biK þ zK \ 0), bir þ zr or
biK þ zK is set to 1 (or to 0.0001, respectively).

Let us formally define the five possible adaptation scenarios for
pathogen lesion i (for a more detailed description of mutation
laws see Supporting Information Notes S1):
(1) Identical (r, K)-restoration: when both depressed traits, that
is bir r \ r and biK K \K , evolve with the same evolution coeffi-
cients, that is for all lesions i at any time t, bir ¼ biK ¼ bi . A
pathogen lesion evolving through a reproduction creates a new
lesion j of a new pathogen strain with the evolution coefficients
bjr ¼ bjK ¼ bi þ z . Here, z follows a uniform law in [�b, b]
where b is the maximum rise and fall of the evolution coefficient,
induced by a mutation.
(2–3) r- (or K-)restoration: when only one trait is depressed by
host resistance, bir r \ r (or biK K \K ), and evolves during
adaptation. Thus, for all lesions i, bir (or b

i
K ) can evolve, and biK

(or bir ) stays constant at 1. Then, a pathogen lesion evolving
through a reproduction creates a new lesion j of a new pathogen

strain with the evolution coefficients bjr ¼ bir þ z (or
bjK ¼ biK þ z) and biK (or bir ) stays constant at 1. Here, z fol-
lows a uniform law in [�b, b]. In this particular case, the compe-
tition coefficient of the death rate is adapted to avoid its
overestimation because of a non-evolving trait. Thus, the compe-
tition coefficients are comparable in all adaptation scenarios. For
r-restoration the death rate becomes

lðbi~Þ ¼ bir r
K

PI ðt Þ
j¼1

bjr

bir
� 1

0
BBB@

1
CCCA Eqn 2

and for K-restoration

lðbi~Þ ¼ r

biK K

PI ðt Þ
j¼1

bjK

biK
� 1

0
BBB@

1
CCCA: Eqn 3

(4) Independent (r, K)-restoration: when both depressed traits
evolve independently. Then, a pathogen lesion evolving through
reproduction creates a new lesion j of a new pathogen strain with
the evolution coefficients bjr ¼ bir þ zr and bjK ¼ biK or
bjr ¼ bir and bjK ¼ biK þ zK , zr and zK are two independent
random variables following a uniform law in [�b, b].
(5) Antagonistic (r, K)-restoration: when the evolution of both
depressed traits is determined by a trade-off between them. Then,
a pathogen lesion evolving through reproduction creates a new
lesion j of a new pathogen strain with the evolution coefficients
bjr ¼ bir þ zr and bjK ¼ biK þ zK . With a probability 1/2 we
picked zr uniformly in [�(8/5)b,(8/5)b], and we fixed
zK ¼ �zr=2, and with a probability 1/2 we picked zK uni-
formly in [�(8/5)b, (8/5)b] and we fixed zr ¼ �zK =2. Intervals

(a) (b)

Fig. 1 Model behavior. (a) Stochastic events with their transition functions (Eqn 1) driving continuous adaptation of the pathogen population to a
quantitatively resistant host. We follow stochastic dynamics of the number of pathogen lesions per strain. Let us assume that the adaptation process starts
at time t ¼ t0 with one lesion with an evolution vector bi ¼ ðbr; bKÞ. Mutation at t ¼ t3 leads to an emergence of a new strain with an evolution vector
biþ2 ¼ ðbr þ zr;bK þ zKÞ with ðzr ; zKÞ picked randomly according to a scenario of the pathogen adaptation (Scenarios of pathogen adaptation section).
The interval between two consecutive times ty and tyþ1 is the time before an event happens. (b) Sample path of stochastic model (Eqn 1). During the
adaptation driven by identical (r, K)-restoration, the pathogen population splits into five distinct strains characterized by evolution coefficients b1; . . . ;b5,
which population sizes are driven by stochastic events. Due to inter-strain competition, the pathogen strain with the highest evolution coefficient, b5, is
selected. The parameter values and initial conditions are I1ð0Þ ¼ 10, r = 1, b = 0.2, x = 0.05, K = 1000.
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were set in order to keep the mutation variances equal to those
from the other scenarios.

To test the sensitivity of the model to mutation laws, we con-
sidered two different stochastic laws for the case of the adaptation
driven by identical (r, K)-restoration, that is bir ¼ biK ¼ bi .
Firstly, we assume z to follow a truncated normal law,
Nð0; b= ffiffiffi

3
p Þ. As for the antagonistic (r, K)-restoration process

the variance is set to be equal to that from the uniform stochastic
law. Secondly, z follows a truncated uniform scaling law,
U½�2bð1:1�bi Þ;2bð1:1�bi Þ�, representing a situation when at the
beginning of the process pathogen lesions are poorly adapted so
beneficial mutations can highly raise the evolution coefficient,
but then, when the individuals have almost completely adapted,
beneficial mutations can only slightly raise the evolution coeffi-
cient. Since the variance changes during the simulation, it is the
only situation where the variance is not equal to that from the
truncated uniform law.

Model implementation

For all adaptation scenarios, at the beginning of the adaptation
process, the pathogen population consisted of 10 lesions of a sin-
gle strain, I1ð0Þ ¼ 10, colonizing a host carrying quantitative
resistance. Thus, for each of the adaptation scenarios, we defined
the initial values of evolution coefficients as equal to 0.2 for
depressed traits and 1 for non-depressed traits. The established
initial conditions correspond to a primary infection of a quantita-
tively-resistant host by a single pathogen strain.

To study the speed of pathogen adaptation, 1000 simulations
were run for every parameter set. A simulation stopped when its
time reached 1.1T, where T was the first time when the evolution
coefficient of one of the depressed traits reached 0.9.

For each run k 2 1, 2, ..., 1000, we determined dynamics of
the total population size, I kðt ky Þ and the dynamics of the popula-
tion evolution vector over the whole population,

�bkr ðt ky Þ ¼
PI ðt ky Þ
i¼1

bir

I ðt ky Þ
; and

�bkK ðt ky Þ ¼
PI ðt ky Þ
i¼1

biK

I ðt ky Þ
; Eqn 4

where t ky is the time at the yth event of the run k.
Then, we calculated the mean population size over 1000 runs,

�I ð�tyÞ ¼
P1000
k¼1

I kðt ky Þ
1000

; Eqn 5

and the mean evolution vector,

��br ð�tyÞ ¼
P1000
k¼1

�bkr ðt ky Þ
1000

; and ��bK ð�tyÞ ¼
P1000
k¼1

�bkK ðt ky Þ
1000

; Eqn 6

where �ty ¼ P1000
k ¼ 1 t

k
y =1000 is the mean time of the yth event

over 1000 runs.

We applied the Gillespie algorithm (Gillespie, 1977) to track
the exact trajectories of the Markov chain, and the model was
implemented in C++ using Code Blocks and a GNU GCC com-
piler. To perform numerical simulations, we used a range of
parameters sweeping a large spectrum of biological situations.
We studied the speed of the adaptation process in the five adapta-
tion scenarios with the following parameter values: r = 1,
K = 1000 and b = 0.2. To check the robustness of the results
obtained, we performed numerical simulations where we varied
the mutation law and values of the r, K and b parameters. With
identical (r, K)-restoration with a truncated uniform law as the
mutation law, r values were varied in {0.5, 1, 2, 3}, for each fixed
colonizing capacity, K 2 {100, 500, 1000, 2000} and with b tak-
ing values in {0.1, 0.2, 0.3}. We also examined model behavior
for two pairs of r and K: r = 0.5 and K = 2000, and r = 2 and
K = 500 (not illustrated). We tested the normal truncated law
and a uniform scaling law with r = 1, K = 1000 and b = 0.2. In all
simulations x was fixed to 0.05.

Results

Progressive pathogen adaptation by the restoration of its
life-traits

To study the speed of pathogen adaptation to a partially resistant
host population, we considered five scenarios: identical (r, K)-res-
toration process, r- or K-restoration, independent (r, K)-restora-
tion and antagonistic (r, K)-restoration. Numerical simulations
showed that the dynamics of the mean evolution coefficients and
the growth of the mean size of the pathogen population were
increasing sigmoid functions for every adaptation scenario
(Fig. 2). If the pathogen adapts to a quantitative resistance by the
evolution of its colonizing capacity, K, the adaptation will pro-
ceed at the highest speed (Fig. 2). Moreover, the establishment
stage is very short, and the dynamics of the mean evolution coef-
ficient, ��bK , soon become a quasi-linear function. In this situa-
tion, the growth of the mean number of lesions also occurs
quickly, but the mean number of lesions is higher at the end of
the adaptation process in the r-restoration case (Fig. 2b). The
lowest adaptation speed and growth of mean number of lesions
correspond to adaptation by the antagonistic restoration of r
and K traits. The curves of the dynamics of the mean evolution
coefficients corresponding to the cases of identical (r, K)-restora-
tion, and r-restoration, and the independent restoration of both
traits are located between the extreme curves in decreasing order
of the adaptation speed. Surprisingly, the speed of the adapta-
tion by identical (r, K)-restoration exceeds that by r-restoration.
Apart from r-restoration, the growth of the number of lesions is
of the same order, since it corresponds to the growth of the
adaptation curves of the colonizing capacity (Fig. 2b). Note that
(r, K)-restoration with independent or antagonistic evolution
coefficients is driven by the restoration of the r-trait at the
beginning of the process (Fig. 2a), and subsequently by the
restoration of the K-trait. In the case of antagonistic evolution
coefficients, the restoration process of the reproduction rate is
much slower.
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The impact of model parameters on adaptation by the
identical (r, K)-restoration

First, we studied the impact of three parameters, r, K, and b on
the adaptation process that resulted from identical (r, K )-restora-
tion. Numerical simulations showed that the dynamics of the
mean evolution coefficients retained a sigmoid shape for any
parameter values (Fig. 3a–c). The higher the values of r, K, or b,
the faster the growth of the mean evolution coefficients, which
implies rapid pathogen adaptation. Since r multiplies all transi-
tion functions, its impact is obvious: variation of r changes the
timescale only. By contrast to r and b, the increase in the coloniz-
ing capacity, K, has a saturating effect on the speed of pathogen
adaptation (Fig. 3b). Thus, K values above a certain threshold
have a negligible impact on the speed of adaptation.

Analysis of the effects of the mutation laws on the adaptation
process demonstrated that for each of the laws considered, the
mean evolution coefficients grew continuously, changing in shape
from the sigmoid curve obtained for normal and truncated
uniform laws to the concave shape obtained for a uniform scaling
law (Fig. 3d). Compared to the truncated uniform law, a normal
distribution of mutation slightly accelerates the adaptation pro-
cess.

Discussion

In this article, we describe a stochastic framework developed to
study the speed of pathogen adaptation to quantitative plant
resistance. The model allows us to provide some general guidance
about how to manage quantitative resistance so as to increase its

(a) (b)

Fig. 2 Evolution of pathogen reproduction
rate and its colonizing capacity in five
scenarios of pathogen adaptation to
quantitative resistance. A continuous
adaptation process is described in terms of
the dynamics of mean evolution coefficients,
��br ,

��bK (a) and of the mean size of the
pathogen population (b). In (a), unbroken
curves represent the dynamics of the mean
evolution coefficient of the colonizing
capacity, ��bK, dashed curves – the dynamics
of the mean evolution coefficient of the
reproduction, ��br, and dotted curves – the
dynamics of both evolution coefficients when
they are equal, ��b ¼ ��br ¼ ��bK. The different
colors represent five adaptation scenarios.
The inset figure shows the first 30 time units.
Other parameters: I1ð0Þ ¼ 10, r = 1, b = 0.2,
x = 0.05, K = 1000.

(a) (b)

(c) (d)

Fig. 3 The impact of the model parameters
on the dynamics of adaptation driven by
identical (r, K)-restoration. (a) Impact of
variation of the reproduction rate, r, on the
adaptation dynamics. Parameter values:
K = 1000, b = 0.2. The mutation law is a
truncated uniform law. (b) Impact of
variation of the colonizing capacity, K, on the
adaption dynamics. Parameter values: r = 1,
b = 0.2. The mutation law is a truncated
uniform law. (c) Impact of variation of the
uniform law boundaries, b, on the adaptation
dynamics. Parameter values: r = 1, K = 1000.
The mutation law is a truncated uniform law.
(d) Impact of variation of the mutation law
on the adaption dynamics. Parameter values:
r = 1, x = 0.05, K = 1000, b = 0.2. Other
parameters for (a–d): br ¼ bK, I1ð0Þ ¼ 10,
x = 0.05.
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durability. In particular, we show that in order to decelerate the
progressive pathogen adaptation, QTLs that decrease the patho-
gen’s ability to extend must be combined with QTLs that
decrease its rate of reproduction.

Sustainable use of QTLs that confer quantitative resistance
to cultivars

The shape of the adaptation curve is crucial for predicting the
durability of the quantitative resistance, since it allows us to pre-
dict the speed of the adaptation process. Novella et al. (1995)
showed that the fitness of RNA viruses increases exponentially.
Nevertheless, it has been shown that the experimental method
used did not reflect the epidemiological aspects of parasite evolu-
tion, since it did not consider the transmission of disease from
host to host (Ebert, 1998). Our model predicts that progressive
pathogen adaptation is an S-shaped function with establishment,
growth, and saturation stages. The growth stage corresponds to
the growth of the effective population size. Indeed, as the number
of lesions increases, the number of emerging pathogen mutants
with a restored trait increases, which speeds up the adaptation
process, as pointed out by Ebert (1998). The saturation stage,
which corresponds to the deceleration of the adaptation process,
occurs when the adaptation is no longer driven by beneficial
mutations, but rather by the selection of strains with the highest
evolution coefficients. Moreover, the higher the mean evolution
coefficient, the harder it is for a beneficial mutant to be fixed
within the pathogen population. In our within-host model, dis-
ease transmission among hosts is not considered either, but the
limitation of the evolution coefficient to a value of < 1 explain
the saturation that occurs following exponential growth and that
results in an S-shaped function. To validate the shape of the theo-
retical adaptation curve we need experimental data for the long-
term dynamics of pathogen fitness, or for the evolution of quanti-
tative traits of pathogenicity.

Moreover, we showed that the pathogen adaptation is slightly
slower when partially resistant cultivars control only the pathogen
reproduction than when they reduce both the pathogen repro-
duction rate and its colonizing capacity, if their adaptation pro-
ceeds at the same speed. This finding can be explained by the
level of selection in a pathogen population. When the partial
resistance reduces only the pathogen reproduction rate, strains
can easily extend. Conversely, when partial resistance of the host
reduces both the pathogen reproduction rate and its colonizing
capacity, pathogen strains compete with one another within a
host, leading to strong selection for the better adapted strain.
This, result in an acceleration of the adaptation process. Never-
theless, if the resistance affects only the pathogen reproduction,
the pathogen is still easily able to extend. This soon renders the
resistance ineffective at limiting pathogen invasion.

Recent empirical studies have demonstrated the existence of
independent and antagonistic evolution of depressed pathogen
traits in an adaptation process (Azzimonti, 2012; Azzimonti
et al., 2013). Our model suggests that the most durable combina-
tions of QTLs are those that induce an antagonistic or an inde-
pendent restoration of repressed reproduction rate and pathogen

colonizing capacity. This finding confirms the hypotheses of Pari-
aud et al. (2009), suggesting that trade-offs between traits of
pathogenicity might constrain the pathogen adaptation to QTLs,
since they apply divergent selective pressures to the pathogen
population. Moreover, our model makes it possible to estimate
the adaptation slowdown induced by trade-offs and shows that it
can be drastic. Thus, our theoretical results can be tested and
exploited in quantitative plant resistance breeding strategies.

We showed that the quick pathogen adaptation can be
explained by the simultaneous restoration of both traits, if the
pathogen population has a high reproduction rate, and mutations
have a high deviation. Previous studies have shown that the
impact of mutations on individual fitness in a specific environ-
ment can be described by some particular statistical functions
(Martin & Lenormand, 2006; Sanju�an, 2010). These functions
look like normal laws for various species, for example Drosophila
melanogaster, Caerorhabditis elegans, Saccharomyces cervisiae or
Cryptococcus neoformans (Martin & Lenormand, 2006), but are
more complicated for viruses, with functions somewhere between
normal and uniform laws (Sanju�an, 2010). Our model shows
that normal mutation law results in slightly faster adaptation to
an unfavorable environment than the truncated uniform law,
since the distribution tails of a normal law allow, albeit with a
low probability, mutations with a strong effect to occur. Never-
theless, these two laws lead to adaptation curves with the same
shape, which can be explained by the symmetry of these laws and
their constant parameters. The uniform law considered with scal-
ing boundaries leads to progressive deceleration of the adaptation
process as shown in Novella et al. (1995).

The robustness of the proposed stochastic approach for
modeling the progressive adaptation of the pathogen
population

The birth and death processes are powerful tools for modeling
the adaptation dynamics of pathogens, since they can easily be
adapted to many biological situations by adjusting the transition
rates (Allen, 2003; Novozhilov et al., 2006). Their extension to
an infinite state space makes it possible to model life history-trait
evolution (Champagnat et al., 2006). This approach allows us to
monitor the stochastic dynamics of mutants, and then to follow
the evolution of pathogen traits, even if the genetic mechanisms
underlying the adaptation process are poorly understood. Note
that the results of the model can be affected by transition func-
tions. However, a comparative analysis of the impact of various
transition functions on the dynamics of the model falls outside
the scope of our study. To preserve the simplicity of the model,
we did not explicitly consider genetic recombination between dif-
ferent pathogen strains. Nevertheless, since our mutations were
modeled by changes in the evolution coefficient, they can also be
considered to be an implicit mimic of recombination processes.

Rouzine et al. (2008) showed that the evolution coefficient
rises logarithmically with the number of lesions until it becomes
extremely large. This can be explained by the fact that a beneficial
mutation may not go on to be fixed, because of interference with
another mutation with a greater beneficial effect that arises either
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shortly before or shortly after the first mutation (Barton, 1995).
Our model confirms that if the colonizing capacity of the patho-
gen increases, the adaptation speed does not increase proportion-
ally, but logarithmically. Moreover, the model confirms findings
reporting that a mutation with a stronger effect, that is which cor-
responds to the extension of the boundaries of the mutation law
in our model, produces an overall reduction in the adaptation
time (Metzgar & Wills, 2000). The model shows that if a patho-
gen adapts, then the strain with the highest colonizing capacity
will eventually be selected despite the fact that lesions with the
highest reproduction rate have a selective advantage at the begin-
ning of the adaptation process. This finding is consistent with
findings of theoretical studies revealing that a quantitative form
of resistance and imperfect vaccines select pathogens with higher
levels of intrinsic virulence, as measured from the induced host
mortality (Gandon & Michalakis, 2000; Gandon et al., 2001;
Massad et al., 2006). It is also consistent with empirical studies
showing an increase in the severity of disease induced by patho-
gens in partially-resistant cultivars in plant epidemiology (Cow-
ger & Mundt, 2002; Caffier et al., 2014). Finally, the model
confirms the intuitive assumption that the existence of a trade-off
between two traits under selection would decelerate the adapta-
tion process. Analysis of the model showed that an increase in the
pathogen reproduction rate or in its colonizing capacity will
increase the adaptation speed in the five adaptation scenarios con-
sidered, but will not change the order of the adaptation curves.
Thus, we can conclude that the model’s behavior is robust, and
that the conclusions drawn about how to manage the progressive
adaptation of pathogens are credible.

Conclusion

Using a stochastic model, we studied the durability of quantita-
tive plant resistance from the viewpoint of its effects on the repro-
duction rate and colonizing capacity of the pathogen population.
Our theoretical framework can help breeders to develop princi-
ples for the sustainable deployment of QTLs. In particular, the
model suggests that in order to slow down progressive pathogen
adaptation, QTLs should target pathogen traits whose restoration
will be subjected to a trade-off. Existence of putative trade-offs
among pathogen traits should be the first indication of their
potential antagonistic restoration if they are depressed by QTLs.
Moreover, QTLs that decrease the pathogen’s maximum capacity
to colonize must be coupled with QTLs that decrease the spore
production per lesion, the infection efficiency or those that
increase the latent period. Note that our model is appropriate for
systemic diseases as well. Our model can also be applied to any
situation in which individuals evolve continuously in order to
adapt to an environment that has depressed their fitness as a
result, for example, of global climate change (Hoffmann & Sgro,
2011).
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