
Acta Appl Math
DOI 10.1007/s10440-013-9854-z

Exponentiality of First Passage Times of Continuous
Time Markov Chains

Romain Bourget · Loïc Chaumont · Natalia Sapoukhina

Received: 7 November 2012 / Accepted: 21 October 2013
© Springer Science+Business Media Dordrecht 2013

Abstract Let (X,Px) be a continuous time Markov chain with finite or countable state space
S and let T be its first passage time in a subset D of S. It is well known that if μ is a quasi-
stationary distribution relative to T , then this time is exponentially distributed under Pμ.
However, quasi-stationarity is not a necessary condition. In this paper, we determine more
general conditions on an initial distribution μ for T to be exponentially distributed under Pμ.
We show in addition how quasi-stationary distributions can be expressed in terms of any
initial law which makes the distribution of T exponential. We also study two examples in
branching processes where exponentiality does imply quasi-stationarity.
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1 Introduction

Let us denote by P (t) = {pij (t) : i, j ∈ S}, t ≥ 0 the transition probability of a continuous
time irreducible Markov chain X = {(Xt )t≥0, (Pi )i∈S}, with finite or countable state space
S and let Q = {qij : i, j ∈ S} be the associated q-matrix, that is qij = p′

ij (0). We assume
that Q is conservative, that is

∑
j∈S qij = 0, for all j ∈ S, and that X is not explosive. The

transition probability (that will also be called the transition semigroup) of X satisfies the
backward Kolmogorov’s equation:

d

dt
pij (t) =

∑

k∈S

qikpkj (t). (1.1)

Let D ⊂ S be some domain and define the first passage time by X in D by,

T = inf{t ≥ 0 : Xt ∈ D}. (1.2)

This work aims at characterizing probability measures μ on E = S \ D such that under Pμ,
the time T is exponentially distributed, that is, there exists α > 0, such that:

Pμ(T > t) = e−αt . (1.3)

It is well known that when μ is a quasi-stationary distribution with respect to T , that is if

Pμ(Xt = i |T > t) = μi, for all i ∈ E and t ≥ 0, (1.4)

then (1.3), for some value α > 0, follows from a simple application of the Markov property,
see [19] or [8] for example. Quasi-stationarity of μ holds if and only if μ is a left eigenvector
of the q-matrix of the process X killed at time T , associated to the eigenvalue −α, see [21].
However, quasi-stationarity is not necessary to obtain (1.3). Some examples of non quasi-
stationary distribution μ such that (1.3) holds are given later on in this paper.

Our work was first motivated by population dynamics, where it is often crucial to deter-
mine the extinction time of a population or the emergence time of a new mutant, see [4–6,
13, 22] for example. In many situations, those times can be represented as first passage times
of Markov processes in some particular domain. Then it is often much easier to find an initial
distribution, under which this first passage time is exponentially distributed than to compute
its distribution under any initial conditions.

Let us be more specific about applications to emergence times in biology which is the
central preoccupation of the authors in [4, 5]. Adaptation to a new environment occurs by
the emergence of new mutants. In adaptation theory, emergence can be described by the
estimation of the fixation time of an allele in the population. We may also imagine a para-
site infecting a resistant or new host, a pathogen evading chemical treatment, a cancer cell
escaping from chemotherapy, etc. [12, 13, 15, 27]. An interesting and important point is to
estimate the law of the time at which these new mutant individuals emerge in the population,
for example to estimate the durability or the success probability of a new treatment or a new
resistance. The emergence problem has already been considered in the setting of branching
processes [1, 17, 26, 27], for multitype Moran models in [9, 10, 25], and for competition
processes, in [4, 5]. In order to explain the latter case in more detail, let us recall that a com-
petition process is a continuous time Markov chain X = (X(1), . . . ,X(d)) with state space
S = N

d , for d ≥ 2, whose transition probabilities only allow jumps to certain nearest neigh-
bors. Competition processes were introduced by Reuter [24] as the natural extensions of
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birth and death processes and are often involved in epidemic models [7, 12, 15]. In [5], the
authors were interested in some estimation of the law of the first passage time T , when an
individual of type r , 1 ≤ r ≤ d , first emerges from the population, that is

T = inf
{
t ≥ 0 : X(r)

t = 1
}
.

Then varying the birth, mutation, migration and death rates, some simulations of the law of
the time T allowed us to conclude that the consideration of interactions among two stochas-
tic evolutionary forces, mutation and migration, can expand our understanding of the adap-
tation process at the population level. In particular, it showed under which conditions on
mutation and migration rates, the pathogen can adapt swiftly to a given multicomponent
treatment.

This paper is organized as follows. In Sect. 2, we establish a general criterion for a mea-
sure μ to satisfy (1.3) and we study the connections between such measures and quasi-
stationary or quasi-limiting distributions. Then, in the third section, we give some sufficient
conditions for (1.3) involving the special structure of the chain on a partition of the state
space E. In particular, Theorem 7 and its consequences allow us to provide some exam-
ples where exponentiality may hold without quasi-stationarity. An example of application
in adaptation theory is provided in Sect. 4.2. The fourth section is devoted to the presenta-
tion of some examples in the setting of branching processes where exponentiality implies
quasi-stationarity.

2 From Exponentiality to Quasi Stationarity

We first introduce the killed process at time T , as follows:

XT
t =

{
Xt, if t < T ,
�, if t ≥ T ,

(2.1)

where � is a cemetery point. Then XT is a continuous time Markov chain which is valued
in E� := E ∪ {�}. Moreover if we define the killing rate by

ηi =
∑

j∈D

qij , (2.2)

then the q-matrix QT = (qT
ij ) of XT is given by

qT
ij =

⎧
⎨

⎩

qij , i, j ∈ E

qi� = ηi, i ∈ E

q�j = 0, j ∈ E�.

(2.3)

From our assumptions, QT is obviously conservative and XT is non explosive. In par-
ticular, QT is the q-matrix of a unique transition probability that we will denote by
P T (t) = (pT

ij (t))i,j∈E�
, t ≥ 0, and which is expressed as

pT
ij (t) =

⎧
⎨

⎩

Pi (Xt = j, t < T ), if i, j ∈ E,
Pi (t ≥ T ), if i ∈ E and j = �,
1j=�, if i = � and j ∈ E�.

(2.4)
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Then this semigroup inherits the Kolmogorov backward equation from (1.1):

d

dt
pT

ij (t) =
∑

k∈E�

qT
ikp

T
kj (t). (2.5)

Henceforth, all distributions ν on E� that will be considered will not charge the state �, i.e.
ν� = 0. In this section, we shall often consider initial distributions μ = (μi)i∈E�

for (XT
t ),

on E� satisfying the following differentiability condition:

μP T (t) is differentiable and
d

dt
μP T (t) = μ

d

dt
P T (t), t > 0. (2.6)

We extend the family of probabilities (Pi )i∈E to i = �, in accordance with the definition of
(P T (t)) and for each t ≥ 0, we define the probability distribution μ(t) on E� as follows:

μi(t) = Pμ

(
XT

t = i
∣
∣ T > t

)
, i ∈ E�. (2.7)

We define the vector δ by δi = 0, if i ∈ E and δ� = 1.

Theorem 1 Let μ be a distribution on E�.

(i) Assume that μ satisfies condition (2.6), then there is α > 0 such that Pμ(T > t) = e−αt ,
for all t ≥ 0 if and only if

μ(t) is differentiable and μ′(t) = eαt
(
μQT + α(μ − δ)

)
P T (t), t > 0. (2.8)

(ii) Assume that there is α > 0 such that Pμ(T > t) = e−αt , for all t ≥ 0, then conditions
(2.6) and (2.8) are equivalent.

(iii) When (2.8) is satisfied, the rate α may be expressed as

α =
∑

i∈E

ηiμi. (2.9)

Proof Note that the condition Pμ(T > t) = e−αt is equivalent to Pμ(XT
t = i, t < T ) =

e−αtμi(t). Therefore, since

Pμ

(
XT

t = i
) = Pμ

(
XT

t = i, t < T
) + 1i=�Pμ(t ≥ T ),

the transition function P T (t) of XT satisfies

μP T (t) = e−αtμ(t) + (
1 − e−αt

)
δ. (2.10)

Then from the differentiability condition (2.6), we see that μ(t) is differentiable and from
the Kolmogorov backward equation (2.5), we obtain

μ
d

dt
P T (t) = −αe−αtμ(t) + e−αtμ′(t) + αe−αt δ

= μQT P T (t). (2.11)

Then from (2.10), we have e−αtμ(t) = μP T (t) − (1 − e−αt )δ and since δP T (t) = δ, for all
t ≥ 0, we see that (2.11) may be expressed as

μ′(t) = eαt
(
μQT + α(μ − δ)

)
P T (t), t ≥ 0.
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Conversely, if condition (2.8) is satisfied, then from (2.6), we can write equation (2.11).
Integrating this expression, we get (2.10) which implies that Pμ(T > t) = e−αt , for all t ≥ 0.
The first assertion of the theorem is proved.

Now if Pμ(T > t) = e−αt , for all t ≥ 0, then we have (2.10), so that if condition (2.6) is
satisfied, then μ(t) is differentiable and

d

dt
μP T (t) = −αe−αtμ(t) + e−αtμ′(t) + αe−αt δ. (2.12)

Moreover from the Kolmogorov backward equation and (2.12), we have μQT P T (t) =
−αe−αtμ(t) + e−αtμ′(t) + αe−αt δ, which is (2.8). The converse is easily derived from sim-
ilar arguments, so the second assertion is proved.

Then from (2.8), we obtain

lim
t→0

μ′(t) = (
μQT + α(μ − δ)

)
P T (0). (2.13)

On the other hand, note that μ�(t) = 0, for all t ≥ 0, so that in particular μ� = μ�(0) = 0
and limt→0 μ′

�(t) := μ′
�(0) = 0. Finally, taking equality (2.13) at � yields

μQT
� =

∑

i∈E�

μiq
T
i� =

∑

i∈E

μiηi = μ′
�(0) − α(μ� − δ�) = α,

which proves the third assertion of the theorem. �

Note that the equality in (2.8), once restricted to the set E can be simplified as μ′(t) =
eαtμ(QT + αI)P T (t), which highlights the importance of the operator QT + αI . This also
applies to the next results.

Remarks 1. It is important to note that a distribution μ on E� may satisfy Pμ(T > t) = e−αt ,
t ≥ 0, whereas (2.6) does not hold. Examples are given in the remark after Theorem 7.

2. When E is finite, condition (2.6) is clearly satisfied. In the infinite case, this condition
may appear theoretical to some extend and sometimes difficult to check when not much is
known on the transition probability. However it is possible to obtain quite simple conditions
implying (2.6). For instance, observe that from (2.5), for all i, j ∈ E� and t > 0,

∣
∣
∣
∣
d

dt
pT

ij (t)

∣
∣
∣
∣ ≤

∑

k∈E�

∣
∣qT

ikp
T
kj (t)

∣
∣

≤
∑

k∈E�

|qT
ik| = −2qT

ii . (2.14)

A sufficient condition for (2.6) to hold is then
∑

i∈E

qiμi < ∞, (2.15)

where qi = −qT
ii . The latter condition is satisfied in particular when the qi ’s are bounded.

Recall definition (1.4) of quasi-stationarity. In our setting, it is equivalent to the following
statement: a distribution μ on E�, is quasi-stationary if

μi = μi(t), for all t ≥ 0 and i ∈ E�. (2.16)
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We will simply say that μ is a quasi-stationary distribution. Then, let us state the following
classical result, already mentioned in the introduction.

Theorem 2 [23] A distribution μ on E� is quasi-stationary if and only if the equation

μQT = −αμ + αδ, (2.17)

holds for some α > 0. (Note that (2.17) is equivalent to μQT
i = −αμi , for all i ∈ E.)

In [23] it is proved that (2.17) is equivalent to the fact that P T satisfies the Kolmogorov
forward equation, which is the case under our assumptions, that is

d

dt
pT

ij (t) =
∑

k∈E

pT
ik(t)q

T
kj . (2.18)

Knowing condition (2.6), Theorem 2 easily follows from an application of the Kolmogorov
backward equation. Actually, under this assumption Theorem 2 can be derived from Theo-
rem 1. As a consequence of both these theorems we also obtain that (2.6) holds whenever μ

is quasi-stationary.

Corollary 3 If μ is a quasi-stationary distribution then condition (2.6) holds.

Proof If μ is quasi-stationary, then it follows from (2.16) and the Markov property that
Pμ(T > t) = e−αt , for some α > 0 (this fact is well known, see [8], for instance). Moreover
the function μ(t) is differentiable and μ′(t) = 0, for all t ≥ 0. On the other hand, from
Theorem 2, equation (2.17) holds. Therefore, condition (2.8) holds, so that (2.6) is satisfied
from part (ii) of Theorem 1. �

A distribution π on E� is called the quasi-limiting distribution (or the Yaglom limit) of
a distribution μ on E�, if it satisfies

lim
t→∞Pμ

(
XT

t = i
∣
∣ T > t

) = πi, for all i ∈ E�. (2.19)

Then a well known result asserts that any quasi-limiting distribution is also a quasi-stationary
distribution, see for example [8, 19, 20]. Recall also that if π is the quasi-limiting distribution
of some distribution μ, then the rate α satisfying (1.3) is given by the expression

α = inf

{

a ≥ 0 :
∫ ∞

0
eatPi(T > t) dt = ∞

}

> 0, (2.20)

which does not depend on the state i ∈ E, see Sect. 3 in [14] for instance. As an application
of Theorem 1 and the above remarks, we show in the next corollary how to construct quasi-
stationary distributions from distributions satisfying (1.3).

Corollary 4 Let μ be a distribution on E� such that Pμ(T > t) = e−αt , t ≥ 0, for some
α > 0 and satisfying (2.6). If μ admits a quasi-limiting distribution, π , then the latter is
given by:

π = μ +
∫ ∞

0

(
μQT + α(μ − δ)

)
eαtP T (t) dt,



Exponentiality of First Passage Times

where
∫ ∞

0 (μQT + α(μ − δ))eαtP T (t) dt should be understood as a possibly improper inte-
gral. In particular, π is a quasi-stationary distribution on E�.

Proof Under these assumptions, it follows from Theorem 1 that for all t ≥ 0, μ′(t) =
eαt (μQT + α(μ − δ))P T (t). Moreover, since Pμ(T > 0) = 1, μ(t) is continuous at 0 and
μ(0) = μ, so that

μ(t) − μ =
∫ t

0

(
μQT + α(μ − δ)

)
eαuP T (u)du.

Since μ(t) converges to a proper distribution μ, as t tends to ∞, it follows that the improper
integral

∫ ∞
0 (μQT + α(μ − δ))eαuP T (u)du = limt→+∞

∫ t

0 (μQT + α(μ − δ))eαuP T (u)du

exists and is finite. The fact that π is a quasi-stationary distribution follows from the results
which are recalled before the statement of the corollary. �

Corollary 4 may be interpreted as follows: if μ is such that T is exponentially distributed
under Pμ and admits a Yaglom limit, then the correction term which allows us to obtain a
quasi-stationary distribution from μ is

∫ ∞
0 (μQT + α(μ − δ))eαtP T (t) dt .

The next results of this section show that whenever there exists a non quasi-stationary
distribution which makes the time T exponentially distributed, then under some conditions,
we may construct a whole family of distributions having the same property.

Proposition 5 Let μ be a distribution on E� satisfying (2.6) and such that Pμ(T > t) =
e−αt , t ≥ 0, for some α > 0. Let us define the vector (μ

(1)
i )i∈E�

, by

μ
(1)
j = −1

α

∑

i∈E�

μiq
T
ij , j ∈ E, μ

(1)
� = 0. (2.21)

If for all j ∈ E,

0 ≤ −
∑

i∈E�

μiq
T
ij ≤ α, (2.22)

then (μ
(1)
i )i∈E�

is a distribution on E� which satisfies Pμ(1) (T > t) = e−αt , for all t ≥ 0.

Proof The assumption Pμ(T > t) = e−αt is equivalent to

∑

i∈E

μip
T
i�(t) = 1 − e−αt . (2.23)

Using condition (2.6) and the Kolmogorov backward equation (2.5), we obtain by differen-
tiating the latter equality

∑

i∈E

( ∑

j∈E�

qT
ij p

T
j�(t)

)

μi = αe−αt .

Decomposing the left hand side and using (2.3) and (2.9), we obtain

∑

i∈E

( ∑

j∈E�

qT
ij p

T
j�(t)

)

μi =
∑

i∈E

(

qT
i� +

∑

j∈E

qT
ij p

T
j�(t)

)

μi
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= α +
∑

i,j∈E

qT
ij p

T
j�(t)μi

= αe−αt ,

which gives

∑

j∈E

pT
j�(t)

(−1

α

∑

i∈E

μiq
T
ij

)

= 1 − e−αt . (2.24)

Then from condition (2.22), we may let t tend to ∞ in (2.24), in order to obtain by monotone
convergence that

∑
j∈E μ

(1)
j = 1, so that

μ
(1)
j = −1

α

∑

i∈E

μiq
T
ij , j ∈ E, μ

(1)
� = 0

is a distribution on E�. Moreover (2.24) is equation (2.23) where we have replaced μ by
μ(1), so that μ(1) satisfies Pμ(1) (T > t) = e−αt . �

Corollary 6 Let μ be a distribution on E� and α > 0. For n ≥ 1, let us denote by q
n,T
ij the

entries of (QT )n and define the vector (μ
(n)
i )i∈E�

, by

μ
(n)
j = (−1)n

αn

∑

i∈E�

μiq
n,T
ij , j ∈ E, μ

(n)
� = 0. (2.25)

Then,

1. μ(n) is a quasi-stationary distribution associated to the rate α, for some n ≥ 1, if and
only if μ(k) = μ(k+1), for all k ≥ n.

2. Assume that for all j ∈ E,
∑

i∈E qT
ij < ∞. If the sequence (μ(n)) converges, as n → ∞,

toward a proper distribution μ(∞), then μ(∞) is a quasi-stationary distribution.
3. Assume that E is finite. If Pμ(T > t) = e−αt , t ≥ 0 and if for all n ≥ 1,

0 ≤ (−1)n
∑

i∈E�

μiq
n,T
ij ≤ αn, (2.26)

then for all n ≥ 1, (μ
(n)
i )i∈E�

is a distribution on E� which satisfies Pμ(n) (T > t) = e−αt ,
for all t ≥ 0.

Proof The proof of the first part simply follows from the identity:

μ
(k+1)
i = −1

α
μ(k)QT

i , i ∈ E, (2.27)

and Theorem 2.
The second assertion is a consequence of the same observation, which leads, by passing

to the limit thanks to the assumptions to, μ(∞)QT
i = −αμ

(∞)
i , i ∈ E. Then we conclude by

applying Theorem 2.
Then the third part follows from Proposition 5 by induction. Indeed, first recall that since

E is finite, condition (2.6) is satisfied for any distribution. If the result is true for ν := μ(n),
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then from the inequality 0 ≤ (−1)n+1
∑

i∈E�
μiq

n+1,T
ij ≤ αn+1 and identity (2.27), we derive

that for all j ∈ E,

0 ≤ −
∑

i∈E�

νiq
T
ij ≤ α,

so that from Proposition 5, ν
(1)
j := −1

α

∑
i∈E�

νiq
T
ij = μ(n+1) is a distribution on E� which

satisfies Pν(1) (T > t) = e−αt , for all t ≥ 0. �

As we have already observed, if supi∈E qi ≤ α, where qi := −qT
ii , then condition (2.6) is

satisfied, but also for all j ∈ E,

(−1)n
∑

i∈E�

μiq
n,T
ij ≤ αn, (2.28)

which provides the second inequality in (2.26). An interesting problem is then to determine
simple conditions ensuring the first inequality in (2.26), that is nonnegativity of the term
(−1)n

∑
i∈E�

μiq
n,T
ij .

3 Sufficient Conditions for Exponentiality

Let us keep the notation of the previous sections. The next theorem provides sufficient con-
ditions for a distribution μ to insure that T is exponentially distributed under Pμ. As shown
in Sect. 4, this result allows us to construct examples for which such distributions exist.

Theorem 7 Let {E1,E2, . . . } be a finite or infinite partition of S containing at least two
elements and with E1 = D (in particular {E2,E3, . . . } is a partition of E). Assume that:

(i) For all k ≥ 2 and l ≥ 1 and for all i ∈ Ek , the quantity
∑

j∈El
qij does not depend on i.

For i ∈ Ek , we set

q̄kl :=
∑

j∈El

qij . (3.1)

Let μ is a distribution on E�, with support in E. The following two conditions are equiva-
lent.

(ii) For all k ≥ 1, the quantity Pμ(Xt ∈ Ek | T > t) does not depend on t ≥ 0. More specif-
ically, we have,

Pμ(Xt ∈ Ek | T > t) = μ̄k, t ≥ 0, (3.2)

where μ̄k = ∑
i∈Ek

μi .
(iii) There exists α > 0, such that

μ̄Q̄ = −αμ̄ + αd,

where Q̄ = (q̄kl)k,l≥1, q̄1k = 0, for k ≥ 1, q̄kk = −∑
l≥1, l 
=k q̄kl , for k ≥ 1, μ̄ = (μ̄k)k≥1

and d = (1,0,0, . . . ).

Moreover, if conditions (i) and (ii) (or equivalently conditions (i) and (iii)) are satisfied, then
T is exponentially distributed under Pμ, with parameter α given by

α =
∑

k≥1

q̄k1μ̄k. (3.3)
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Proof Let (Yt )t≥0 be the continuous time process with values in N = {1,2, . . . } which is
defined by Yt = k, if Xt ∈ Ek , that is

Yt =
∑

k≥1

k1{Xt ∈Ek}, t ≥ 0.

Observe that T = inf{t : Yt = 1}. Then under assumption (i), the absorbed process

Y T
t =

{
Yt , if t < T ,
1, if t ≥ T ,

(3.4)

is a continuous time Markov chain with q-matrix Q̄ = (q̄kl)k,l≥1, as defined in (iii). See for
instance Sect. 3.4 in [8].

Then recall from (iii), the definition of the measure μ̄ on N: μ̄k = ∑
i∈Ek

μi , k ≥ 2 and

μ̄1 = 0. Let (P̄k)k≥1 be the family of probability laws associated to the Markov process
(Yt )t≥0. For all k ≥ 2,

Pμ(Xt ∈ Ek, t < T ) =
∑

i∈E

μiPi (Xt ∈ Ek, t < T )

=
n∑

l=2

∑

i∈El

μiPi (Xt ∈ Ek, t < T )

=
n∑

l=2

μ̄lP̄l (Yt = k, t < T )

= P̄μ̄(Yt = k, t < T ), (3.5)

where the third equality follows from the fact that Pi (Xt ∈ Ek, t < T ) = P̄l (Yt = k, t < T ),
for all i ∈ El . Assume that condition (ii) holds, then we derive from (3.2) and (3.5) that for
all k ≥ 2,

P̄μ̄(Yt = k | t < T ) = μ̄k,

which means that μ̄ is a quasi stationary distribution with respect to the lifetime of the
Markov process Y T . In particular, thanks to Theorem 2, (ii) and (iii) are equivalent. More-
over, since (2.8) in Theorem 1 is satisfied, then from (iii) in this theorem, T is exponentially
distributed under Pμ̄, with parameter α = ∑n

k=2 q̄k1μ̄k . We conclude from equality (3.5)
which shows that Pμ(t < T ) = P̄μ̄(t < T ). �

Remark Let us focus on two very particular situations, where Theorem 7 can be applied.
First, in the particular case where the partition {E2,E3, . . . } of E is reduced to the singletons
of E, then condition (ii) is obviously satisfied and condition (i) simply means that μ is quasi-
stationary with respect to T , hence the conclusion follows from Theorem 2.

Then recall the definition of ηi in (2.2). In contrast to the latter situation, by considering
{E} as a partition of E, it follows from Theorem 7 that if there exists α > 0 such that ηi = α,
for all i ∈ E, then the first passage time T has an exponential distribution with parameter
α under Pμ, for all initial distributions μ with support in E. This result follows also from
direct arguments, see Proposition 8 below for instance. In the case where S is finite, it is
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stated in Proposition 2.1, (ii) of [8]. Note that, if in addition there is a Yaglom limit, μ, as
recalled in the previous section, then in this case, μ is explicitly given on E by

μ = 1{i} +
∫ ∞

0
1{i}

(
QT + αI

)
P T (t)eαt dt,

for all i ∈ E. In particular, this expression does not depend on i. Note that in this case, μ

corresponds to the stationary distribution of the unkilled process X. Finally, let us emphasize
that from this particular situation, we can construct examples where an initial distribution μ

satisfies (1.3) but not (2.6).

Actually it is always possible to compare the distribution of T with the exponential law,
as Proposition 8 shows. It provides exponential bounds for the distribution function of the
first passage time.

Proposition 8 Define the rates α0 = infi∈E ηi and α1 = supi∈E ηi , where ηi is defined in
(2.2). Then the tail distribution of the first passage time T satisfies the inequalities:

e−α1t ≤ Pi (t < T ) ≤ e−α0t , (3.6)

for all t ≥ 0 and for all i ∈ E.

Proof By definitions (2.2) and (2.3), we obtain that α0 ≤ qk� ≤ α1, for all k. From these
inequalities and Kolmogorov’s forward equation at state i ∈ E and �, i.e.

d

dt
pT

i�(t) =
∑

k∈E

pT
ik(t)qk�,

we derive that,

α0Pi (t < T ) ≤ d

dt
Pi (t < T ) ≤ α1Pi (t < T ).

The result follows immediately. �

4 Examples and Application

4.1 Two Examples of Exponentiality

With the aim of illustrating the previous results, we provide in this subsection two examples
of non quasi-stationary distributions μ such that T is exponentially distributed under Pμ.

An Example when the State Space Is Finite With the same notations as in Theorem 7, let
S = {1,2,3,4,5,6}, E1 = D = {1}, E2 = {2,3}, E3 = {4,5}, E4 = {6} and let us define the
q-matrix,

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−6 0 2 1 1 2
1 −8 1 1 2 3
1 0 −7 2 1 3
1 1 1 −8 2 3
1 0 2 1 −7 3
1 1 0 1 1 −4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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which clearly satisfies the general conditions of this paper, see Sect. 1, as well as condition (i)
of Theorem 7. Let Q′ be the q-matrix Q (or equivalently QT ), to which the first line and the
first column have been removed and let Q̄′ be the q-matrix Q̄ to which the first line and the
first column have been removed, that is

Q′ =

⎛

⎜
⎜
⎜
⎜
⎝

−8 1 1 2 3
0 −7 2 1 3
1 1 −8 2 3
0 2 1 −7 3
1 0 1 1 −4

⎞

⎟
⎟
⎟
⎟
⎠

and Q̄′ =
⎛

⎝
−7 3 3
2 −6 3
1 2 −4

⎞

⎠ .

The Perron-Frobenius eigenvalue of Q̄′ is λ = −1 and the associated normalized left eigen-
vector is ν = (3/16,5/16,1/2). In particular, νQ̄′ = −ν, so that μ̄ = (0,3/16,5/16,1/2)

and Q̄ satisfy condition (iii) of Theorem 7 with α = 1.
Then Theorem 7 asserts that the initial distribution μ = (0,3/32,3/32,5/32,5/32,1/2)

is such that under Pμ, the emergence time T is exponentially distributed with parameter 1.
Moreover, since μQT = (0,−3/32,−3/32,−5/16,0,−1/2), then relation (2.17) in Theo-
rem 2 cannot be satisfied for any α > 0, and hence μ is not a quasi-stationary distribution.

Also, note that μ satisfies conditions of Proposition 5. Then with the notation of this
proposition, we have μ(1) = (0,3/32,3/32,5/16,0,1/2), so that condition (2.22) is satis-
fied and from this proposition, μ(1) is another distribution such that under Pμ(1) , T is expo-
nentially distributed with parameter 1. Moreover, we can check as above that μ(1) is not a
quasi-stationary distribution.

Exponentiality in Z
d -Valued Lévy Processes In this example the state space is S = Z

d ,
with d ≥ 2 and X is a d-dimensional compound Poisson process. In particular, X issued
from 0, can be represented on some probability space (Ω,F,P), as,

Xt =
Nt∑

k=0

ξk, t ≥ 0,

where (ξk)k≥1 is a sequence of i.i.d. random variables with distribution on Z
d \ {0}, ξ0 = 0

and (Nt )t≥0 is a standard Poisson process, that is independent of the sequence (ξk)k≥1. As
usual, Px , x ∈ Z

d will denote the family of probability measures such that X starts from x

under Px .
Then assume that there is a linear transformation M : Zd → Z

d , such that the coordinates
of the compound Poisson process Kt := MXt , t ≥ 0, are independent and non degenerate.
Assume moreover that for some vector u = (u1, . . . , ud) ∈ Z

d , whose d ′ coordinates (0 <

d ′ < d) are equal to 0, the support of the distribution of t uMξ1, is a set of the form {−a,−a+
1, . . . ,−1,1, . . . , b − 1, b}, for some 0 < a,b < ∞ and that E(tuMξ1) < 0. Note then that
the Lévy process

Yt := t uMXt =
Nt∑

k=0

t uMξk, t ≥ 0,

satisfies the conditions of Definition 1 in [16], except that it is lattice. However, as noticed
just after this definition, we can check from an analogous result in [3] that Theorem 1 in
[16] is still valid in the lattice case. Fix an integer k > 0 and let,

T = inf{t : Yt < −k}.
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Then Theorem 1 in [16] asserts that there exists a quasi-stationary distribution for Y , with
respect to T . Let us denote by ν this distribution and let μ be a measure such that:

(i) μ = θM−1, where θ = θ1 ⊗ θ2 ⊗ · · · ⊗ θd is a product probability measure on Z
d and

θM−1 is the image of θ by M ,
(ii) ν = μA−1, where A is the linear transformation, Ax = t uMx, x ∈ Z

d .

Let Px , x ∈ Z be the probability measure under which Y starts from x, then from (ii) and
the quasi-stationarity of ν, we obtain

Pμ(T > t) = Pν(T > t) = e−αt , for some α > 0.

Observe that the time T can be expressed as

T = inf{t : Xt ∈ D}, where D = {
x ∈ Z

d : t uMx < −k
}
.

Then let us show that μ is not quasi-stationary with respect to time T . Let v = (v1, . . . , vd) ∈
Z

d be another vector such that vi = 0 if ui 
= 0, for i = 1, . . . , d and set Z := t vMX. Assume
that Z is not a degenerate process. Then by construction of u, v and μ, the compound
Poisson processes Y and Z are independent under Pμ. It follows that for all i ∈ Z and t ≥ 0,

Pμ(Zt = i |T > t) = Pμ(Zt = i).

If μ was quasi-stationary, then the last expression would be equal to μB−1(i), where B :=
t vM , hence μB−1 would be a stationary distribution for the compound Poisson process Z.
But such a distribution does not exist, as is well known.

Note that this situation becomes trivial when the coordinates of the Poisson process X =
(X(1), . . . ,X(d)) are independent, that is M = Id . Let us chose Y and Z as follows, Y = X(1)

and Z = X(2). Then any measure μ of the form μ := ν ⊗ θ2 ⊗· · ·⊗ θd , where ν is the quasi-
stationary distribution associated to Y as above, is such that (1.3) holds, although it is not
quasi-stationary.

Remarks Contrary to the situations that are described just above, it may sometimes happens
that exponentiality implies quasi-stationarity. Here are a couple of examples.

(i) Let X be a birth and death process with birth rate λn = nλ and death rate νn = nν, when
the process is in state n. In this case, S is the set {0,1, . . . } of nonnegative integers. Set
D = {0} and recall the definition of the first passage time,

T = inf{t : Zt = 0},
which is an absorption time in the present case. It is well known that, if ν > λ, then
Pk(T < ∞) = 1, for all k ≥ 1 and from the branching property, we have for all k ∈ E =
{1,2, . . . } and all t > 0,

Pk(T ≤ t) = [
P1(Zt = 0)

]k
. (4.1)

Let qt := P1(Zt = 0) be the extinction probability, then from (4.1), for any probability
measure μ on E, the quantity Pμ(Zt = 0) = Pμ(T ≤ t) corresponds to the generating
function Gμ of μ, evaluated at qt , that is

Pμ(T ≤ t) = Gμ(qt ). (4.2)
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In [2], p. 109, we can find the expression: qt = νe(ν−λ)t−ν

νe(ν−λ)t−λ
, so that if μα is a distribution

which satisfies Pμα (T > t) = e−αt , for some α > 0, then from (4.2), its generating
function is given by:

Gμα(t) = 1 −
(

ν − λt

ν(1 − t)

) −α
ν−λ

, t ∈ [0,1).

This shows that for any α > 0 there is a unique distribution satisfying Pμα (T > t) =
e−αt . In the case of continuous state branching processes, a similar expression for the
Laplace transform of μα has been obtained in [18], see p. 438 therein.

(ii) In the case where S is a finite set, another example where exponentiality implies quasi-
stationarity is given in part (iii) of Proposition 2.1 of [8]. The Markov chain that is
considered in this work is a random walk in the finite set {0,1, . . . ,N} that is killed at
0.

(iii) In the case of continuous state space Markov processes, other examples where expo-
nentiality implies quasi-stationarity may be found in [11]. In this work it is proved that
if the absorption time of a positive selfsimilar Markov process is exponentially dis-
tributed under some initial distribution, then the latter is necessarily quasi-stationary.

4.2 Application to the Emergence Time of a Mutant Escaping Treatment

Let us consider the case of a pathogen population living on a host population. At each time
t , the whole host population is either treated or not. A pathogen individual can mutate to
defeat the treatment. We assume that each pathogen has the same mutation rate during a
reproduction. Then, the probability that at least one pathogen mutates in the population is
proportional to the pathogen population size. Since a treatment controls the pathogen pop-
ulation size, we assume that the latter takes two different values according to the presence
or absence of the treatment. Thus, the mutant emergence rate takes two different values. In
presence of the treatment, the pathogen population size is low, then the mutant emergence
rate is low. In absence of treatment, the pathogen population size is high, then the mutant
emergence rate is high. Then, the dynamics of the pathogen population size is described as
a Markov chain X whose state space S is split up in three parts, that is S = E1 ∪ E2 ∪ E3,
with:

• E1, the set of values of the pathogen population size when the population contains at least
one mutant,

• E2, the set of values of the pathogen population size when the population contains no
mutants and its size is less than a given value K ,

• E3, the set of values of the pathogen population size when the population contains no
mutants and its size is greater than K .

The transition rates from Ei to Ej , 1 ≤ i, j ≤ 3 are denoted by q̄ij , in accordance with the
notation of Theorem 7. The set E2 corresponds to the presence of treatment and in this case,
the number of pathogens is low. The set E3 corresponds to the absence of treatment and the
number of pathogens is high. In each case, the number of pathogens does not fluctuate very
much, so that we can assume that the transition rates q̄23 and q̄32 between E2 and E3 are
constant. They depend only on the treatment strategy, that is on the choice to use a treatment
or not at time t . Then for the same reasons both mutant emergence rates q̄21 and q̄31 are
supposed to be constant. From the present model, q̄21 should be much lower than q̄31. The
emergence time is then defined as T = inf{t ≥ 0 : Xt ∈ E1}.
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Let us consider a treatment strategy ensuring that μ(E2) = μ̄2 is the probability for the
pathogen population size to be less than K before a mutation occurs. Similarly, the prob-
ability for the size to be greater than K before mutation, is μ(E3) = μ̄3 = 1 − μ̄2. From
Theorem 7, T is exponentially distributed with parameter α > 0, if μ̄ solves the equation:

μ̄Q̄T = −αμ̄, (4.3)

with

Q̄T =
(−q̄23 − q̄21 q̄23

q̄32 −q̄32 − q̄31

)

.

Let us set α = μ̄2q̄21 + μ̄3q̄31 and

μ̄2 = q̄21 − q̄31 + q̄23 + q̄32 − √
(q̄21 − q̄31 + q̄23 − q̄32)2 + 4q̄23q̄32

2(q̄21 − q̄31)
.

Then we can check that μ̄ = (μ̄2, μ̄3) is a solution of (4.3). Therefore, with this choice for
α and μ̄, the time T is exponentially distributed with parameter α > 0.

From a biological point of view, these results may be interpreted as follows. The rate μ̄2

represents the proportion of time during which the host population has been treated. Then
from this proportion of time, we can determine the distribution of the emergence time of a
mutant pathogen.
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