
 J. Appl. Prob. 34, 882-897 (1997)
 Printed in Israel

 C Applied Probability Trust 1997

 TWO CHAIN-TRANSFORMATIONS AND THEIR APPLICATIONS

 TO QUANTILES

 J. BERTOIN,* L. CHAUMONT* AND
 M. YOR,* Universite Pierre et Marie Curie

 Abstract

 We describe two chain-transformations which explain and extend identities for order
 statistics and quantiles proved by Wendel, Port and, more recently, by Dassios.

 ORDER STATISTICS; QUANTILE; EXCHANGEABILITY; CHAIN TRANSFORMATION

 AMS 1991 SUBJECT CLASSIFICATION: PRIMARY 60J30; 60J20

 1. Introduction

 We first report the intricate recent (and not so recent) history of the study of quantiles

 of stochastic processes, as we finally came to understand it.
 The inverse of the distribution function of a probability measure y on R,

 M,= inf{x : p((- oo, x]) > a , acc (0, 1),

 is known as the family of quantiles associated with y. The quantile M,(X) associated
 with the occupation measure

 tX(dx) = 1{X,EdxdS

 of a real-valued stochastic process X= (X,, 0 < s < 1), has been of interest recently in
 mathematical finance, in connection with the pricing of path-dependent options. It may

 be thought of as a variant of Asian options; however, the computations of the laws of
 quantiles are much easier. With such applied purpose in mind, the study of M,(X), when
 Xis a Brownian motion with drift, has been dealt with since 1992 by Miura [16], Akahori

 [1], Dassios [6], Embrechts et al. [12] and Yor [23]. In this special case, Dassios [6]
 obtained the following striking identity:

 (1) M,(X) d sup X, + inf (X, +- X%).
 OOtfa Octy l -a

 Of course, we may use the Markov property and rewrite (1) as
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 Two chain-transformations and their applications to quantiles 883

 (2) M,(X) sup X, + inf X,, Ot?:< 0<:t5l-a

 where X denotes an independent copy of X. Recently, Dassios [7] proved a version of
 (1) for chains with exchangeable increments, and deduced that (1) holds more generally

 for processes (in continuous time) with exchangeable increments. As a consequence,
 (2) can be extended to Levy processes. More recently again, Dassios [8] extended the
 validity of (1) to additive renewal reward processes.
 On the other hand, in the case when X is a Brownian motion with drift, Embrechts

 et al. [12] gave an explanation of (1) based on a path transformation which is a close
 relative to that in Bertoin [3]. Moreover, the latter has a version for chains with exchange-

 able increments as well; see [4]. Hence, it became natural to search for a pathwise
 explanation of the Dassios identity in [7] in the same vein as in [12].
 After writing a first draft of this paper along these lines, we were kindly informed by

 Ron Doney that in the case where X, = St,, t > O, with [t] the integer part of t ? 0 and

 S,=n=1 k, n G , is a random walk (i.e. the ?k are i.i.d. real-valued r.v.'s), (1) had already been obtained by Wendel [20] in his study of order statistics of partial sums;
 see also Port [18]. Hence, we suggest calling (1) the Wendel-Port-Dassios identity.
 Once we had learnt of the Wendel-Port-Dassios references, it still seemed that our

 project of developing the techniques of Bertoin [3, 4], and applying them to the study
 of quantiles for various classes of processes X, had some value.
 This paper is organized as follows. Two chain-transformations, the first one of a

 predictable kind, the second one of an optional kind, are presented respectively in
 Sections 2 and 3. These transforms allow one to recover respectively the identity (1) for
 renewal reward processes [8] and for chains with exchangeable increments. In Section
 4, using approximations based on discrete time skeletons, some continuous time versions

 of the main result in Section 3 may be obtained for Levy processes; the Meyer-Tanaka

 formula for local times plays an essential r61e here. Finally, in Section 5, explicit formulae
 are obtained in the case of Levy processes with no negative jumps.

 2. A predictable explanation

 2.1. A predictable transform. Let (s,),n0o be a real sequence and (an),n!1 a sequence
 of positive real numbers with 1'" ak = 00. Introduce the sequence of the partial sums

 (3) Ao=0, An= E ak, n= 1, 2,.-., k=1

 its right-continuous inverse

 (4) 4(t)=max{k : Ak < t}, t 0,

 and the step function x,=s,,), whose successive values (or steps) are so,--., s,..-. We
 stress that x is right-continuous with x(A,)= s,, and that the value of the nth step of x
 is s,_, and its duration a,.
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 884 J. BERTOIN, L. CHAUMONT AND M. YOR

 Next, fix a level 1 > 0, and consider the increasing sequences

 (5) A()= - akl(sk_->l, Ane= Z akl{sk-_-l) =An-AD, k=l k=l

 and their inverses

 (6) X~ = maxl{k: AE < t}, a = max {k: AE < t},
 with the usual convention min 0 = oo. We then distinguish the increments sk -sk 1 accord-

 ing to whether Sk-1 > 1 or Sk-1 ? 1, to construct two new (right-continuous) step-functions

 pe and pe as follows:

 ip = l{sk_,>l(Sk -k--1) for t < A, k=l

 p = l~Sk_,l }(Sk-Sk-1) for t< A. k=1

 The notation p refers to 'predictable'.

 The construction of pe and pe is better understood in terms of the excursions of the

 step function x above and below 1. More precisely, write u, and d, for the instant of
 the n th upcrossing and the n th down-crossing, respectively, of x across the level 1.
 Namely, put d0 =0 and

 u,=inf{t > d,_ : x, > 1}, d,=inf{t > u, : x, l} (n= 1, 2,...).
 Call (x,+,, 0 ? t < d,-u,), the nth excursion of x above 1; observe that all its values
 but the ultimate one are greater than 1. We see that pe is obtained by shifting the first

 excursion of x above 1 to make it start from 0, then tacking on the second excursion
 above 1 at the end of the first; then, iterating this operation with the third, fourth, and

 so on. The construction of pe is similar, and done with the sequence of the excursions

 of x below 1, which are the pieces of paths of the type (Xdn,-+t, , t < un-d,_1).
 Finally, we introduce the functions of extremes

 min-= min {p, O s < t}, maxE= max {pf, O s < t},

 and we observe the following identity, which has its roots in Williams [21] and
 Doney [9].

 Lemma 1. For every t E [0, AE), we have

 inf{v: max + min~ l} = A ().

 Proof We first point out that, for every integer n,

 Af= li xI, dy, A = lf,1stdv.

 In particular,
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 Two chain-transformations and their applications to quantiles 885

 3 =max n": lIx{'_?)dv < t

 is an index at which s < 1; that is, A(ac) is an instant at which x ? 1.
 Let k be the number of excursions of x above 1 completed before time A(xcE), so that

 dk < A(cf)<uk+. If k= 0, then Ae(E#)==0 and maxE =0; the assertion of Lemma 1 is
 obvious. We henceforth focus on the case k ? 1. On the one hand, the construction of
 pe in terms of the excursions of x below 1 shows that

 k

 maxE? = (X,, -Xd_-)+ max{x, -xd, v [dk, ). n=l

 Moreover,

 Ae(D(E) = lx,>)dv,

 and the construction of pe in terms of the excursions of x above 1 shows that pe reaches
 a new minimum at time A e(c4), and that its value is

 k

 mine(A((,E)) =p(Ae(E,))= -Z (Xd -x). n=l

 It follows that max + mine(Ae(afx)) = max {x,, v E [dk, a~]} < 1. In other words, we have
 shown that

 Ae(Da) ? inf{v: max + min' < l}.

 On the other hand, the same argument shows that, for any v<A(, e)

 k-1

 min < C (xdn u-xn)+minx,-xuk,r [uk, dk)}.
 n=l

 It follows that

 min + maxE < min{xr,, re [uk, dk]} +max{x, vE [dk, at

 The minimum on the right-hand side is obviously greater than 1, whereas the maximum

 is non-negative. This establishes the converse inequality

 Ae(~,a) ? inf{v : max,E + min ? l}.
 2.2. The Dassios identity for renewal reward processes. We shall now apply the iden-

 tity of Lemma 1 to explain the Dassios identity for the quantiles of additive renewal

 reward processes [8]. First, consider a sequence of i.i.d. pairs of random variables ((5,, a,),
 n= 1, 2,--.), where the 4, are real-valued and the a, are positive a.s. Then, introduce the
 random walk S given by
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 886 J. BERTOIN, L. CHAUMONT AND M. YOR

 S0=0, S,= n E k (n = 1, 2,-. ). k=l

 We use the same notation as in Section 2.1 for the increasing chain A and its right-
 continuous inverse a (see (3) and (4)). The latter is known as a renewal process, and the
 process X,= S(,,) obtained by time-changing the random walk by this renewal process
 is called a renewal reward process. Finally, we consider for every # E (0, 1) and t > 0 the

 quantile

 Mx(fl, t)=inf b :{ l{X b}ds > flt .

 The purpose of this section is to give a simple argument for the following identity.

 Theorem 1 (Dassios [8].) Let XV1) and X(2) be two independent copies of X. Then

 Mx (/, t) = sup X}S) + inf X,(2) O<s <fit O<s<_(1-f)t

 Remark. In the special case when a = 1, then X, = S[,, where [t] stands for the integer
 part of t. Then Theorem 1 merely rephrases the original identity of Wendel [20]; see
 also Port [18].

 To start with, just as in Section 2.1, we fix a level 1 > 0 and distinguish the increments

 of the random walk according to whether Sk -_ > 1 or Sk - I1, to construct two right-
 continuous step-processes Y 1 and Ye as follows:

 -,E = Z lsk-1>1(Sk -Sk-1) for t <A, k=l

 ,e = Z l(s,_ -tr(S, -- Sk-) for t< A?, k=1

 where we used the notation (5) and (6). Recall that the random walk S oscillates if
 lim supS,=oo and liminfS,=-oo a.s.; and it should be clear that then AA=
 A - = 0 a.s. The joint law ofE and 1 ye is given in that case by the following elementary
 lemma.

 Lemma 2. Suppose that S oscillates. Then ~ e and e are independent and both have
 the same law as X.

 Proof. Introduce

 N* =Card{k= 1,..., n: SkI_ > l}, N,e =Card{k= 1,..., n: Sk_1 ? l}

 and their respective inverses vo and ve. Then consider the random walks
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 Two chain-transformations and their applications to quantiles 887

 SE-= D (Sk-Sk-1)l,{sk,1, Se-= (Sk--Sk,-)l{sk,}.
 k=l k=1

 One can immediately check that the bivariate time-changed random walks (Se, Ae) o ve
 and (Se, Ae) o ve are independent and have the same law as (S, A). See e.g. Doney [9].

 Moreover, Y e can be viewed as Se o v0 time-changed by Ne a e, the inverse of Ae o v?;
 and we have a similar connection between Ye and (Se, Ae) o ve. Our assertion follows.

 We now prove Theorem 1.

 Proof. Suppose first that the random walk S is centered, i.e. E(,) = 0; in particular,
 it oscillates. The level I ? 0 being fixed, we first observe that

 Mx(fl, t) > l lx<dv< ft - - Ae(cce) > (1- fl)t.

 We then use Lemma 1 to see that the right-hand side is equivalent to

 maxet + min_(1i), > l,
 where maxe and mine are the maximum process of 9e) and the minimum process of
 ~ e, respectively. An application of Lemma 2 now shows the identity

 P(Mx(fl, t)>l1)= ( sup X1I) + inf X I),
 O!s<fit O s _<(1 --)t

 whenever 1 / 0. That the same identity still holds when / < 0 can then be seen by replacing

 the variables ?i by their opposite.
 We finally show that the assumption that the random walk S is centered can be

 dropped. For every e > 0, we can find (possibly in a larger probability space) a random

 variable such that P(j:i A ?) < e and E(??)= 0. It is then easy to see that, in the obvious
 notation, for every t > 0,

 lim P(Xs=Xs' for all s? t)= 1
 6-0+

 and a fortiori, for every # E (0, 1),

 lim P(MxE(fl, t)= Mx(#, t))= 1.
 6-0+

 Since Theorem 1 holds for X%, we conclude that it holds for X as well.

 3. An optional explanation

 3.1. An optional transform. For every integer j 1 0, we put

 j = {s=(so,.., sj)ER *' with so=0}
 and call an element of Xj a sequence with length j. Next, we fix an integer n ? 1 and

 an ordered family of real numbers i < -- < . in. We denote by E the subset of X, which
 consists of sequences s=(so,.--, s) such that the increasing rearrangement of its
 increments, s - So,..., sn - sn_ , is i,---, in.
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 888 J. BERTOIN, L. CHAUMONT AND M. YOR

 We next fix a level 1 > 0. For k=0,..., n, let Tk stand for the set of pairs (s', s") E

 Ek X n-k which satisfy the following conditions. First, the increasing rearrangement of
 the increments of s' and s"

 si -SO, s?" '- -s~ _-, Sll -So "s1,., sn_-k - Snk-1 1

 is il, ---, in (for k = 0 and k = n, this condition reduces to s"E E and s' E E, respectively).
 Second,

 max s < 1.

 Third,

 s'> - max s', for j= 1,-, n-k,

 (we agree that this last condition is always fulfilled if k= n). Finally, we put

 Y= U Yk. k=O

 To describe the optional transform of a sequence s E E, we first set d0e = oe = 0 and
 for every k= 1,-.-, n

 k k

 Mke = C l(si>l}, Mke = lsi<'1=k--dkk" j=1 j=1

 In words, 4d is the number of indices k E { 1,-.., n} at which sk > 1. We stress that
 ?4 is not the same as AO evaluated for ak- 1 in (5). Then, we put ak =
 min{j : d =k} for k= 0,.., d4 and we define ae similarly. Finally, we introduce the
 sequences oE and oe given by ooI = oe =0 and

 Ok =E lIsj>l)(Sj-Sj-l), k= 1,..., d4,, j=1

 ae

 Ok = 2 (s,,=,}(sj-sj-_), k = 1, . ., dQ. j=1

 The notation o refers to 'optional'. In words, the sequence of increments of o? corresponds

 to the subsequence of the increments sj - sj_, of s for which sj > 1, and there is a similar
 description of the increments of oe. In particular, the increasing rearrangement of the

 increments of o? and oe is plainly il,"', in. Moreover, if k, = min{k: sk > /} stands for
 the first index at which s exceeds L, then it should be clear from the construction of oe
 that this sequence reaches its overall maximum before k,, i.e.

 max o = max s l.
 0< O< j<kl

 On the other hand, the very construction of o? shows that
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 Two chain-transformations and their applications to quantiles 889

 oP > 1-ski-_l, j7 =9n n. .
 In conclusion, the transform s -+ (oe, o0) maps E in Y.

 Lemma 3. The map s -+ (oe, o0) is a bijection from E onto Y.

 Proof. We have to show that given an arbitrary pair (s', s") E Yk, we can find a unique
 sequence s E E such that s'= oe and s" = o. Writing s, as the sum of its increments, we

 see that we must have s, = i + -- + in. On the other hand, the last increment s,-s, _n of

 s must coincide with the last increment s,'_k-s'_-k- of s" if Sn > 1, and with the last
 increment of s' if s, ? a. This specifies s_n -1 and we can therefore construct s by inverse
 induction.

 3.2. An identity for chains with exchangeable increments. The integer n ? 1 and the
 level I ? 0 being fixed, we now describe a decomposition of a sequence s E E. Denote
 the last index k for which sk - I is less than or equal to the overall minimum of s by

 T = max k : sk--l <o min s.
 We then split the sequence s into the post-r sequence s,

 sk = s+k-S,, k=O,-.., n-z,

 and the reversed pre-r sequence s,

 Sk = sr_k - s,, k = ,- 0 -,?.

 Lemma 4. The map s -,(-+ , s) is a bijection from E onto Y.

 Proof. The lemma is intuitively obvious after drawing a picture. Indeed, it should

 be clear that (- , s) E yk for k = -. Conversely, take any k = 0,..-, n and pick an arbitrary

 pair (s', s") E Yk. Denote by a=(ao,.--, an) the sequence obtained by reversing -s' and
 then tacking on s",

 sk-sk_j for j= 0,--, k,
 sj -k + Sk for j = k,..-, n.

 One can immediately check that a E and that (with obvious notation) a= -s' and
 = S".

 We then consider a finite sequence 1,--,., n of exchangeable random variables taking

 values in -R. Let S= (S0,.--, S,) be the chain of the partial sums, So = 0
 k

 Sk= Zj, k=l,.., n. j=1

 We also denote by 9 the exchangeable sigma-field of (,---*, ',), that is the sigma-field

 generated by the increasing rearrangement of i,.-, - ,, and by P( I 9) the conditional
 probability given 9.

This content downloaded from 193.52.40.1 on Mon, 27 Feb 2017 09:01:08 UTC
All use subject to http://about.jstor.org/terms



 890 J. BERTOIN, L. CHAUMONT AND M. YOR

 Here is the key result of this paper, which extends Theorem 2.1 in [4] (see also Lemma 3

 in Section XII.8 in Feller [13]). Denote by S, S, 9e, and 9(e, the chains s, s, oe, and o?
 evaluated for s = S, respectively.

 Theorem 2. The pairs of chains (-S, S) and ((e, (e) have the same law under
 P(-I

 Proof. Take an ordered family of real numbers il < .- < i, and work conditionally
 on the event that the increasing rearrangement of , -,', ~, is il,.--, in. The exchangeability
 of the increments of S entails that its law is the equi-probability on E. On the one hand,
 we deduce from Lemma 4 that the law of (- S, S) is the equi-probability on Y. On the
 other hand, we deduce from Lemma 3 that the law of ((e, (e) is the equi-probability
 on Y.

 Recall that the last index k for which Sk - I is less than or equal to the overall minimum
 of the chain S is

 z=max {k: Sk--l min Sj

 so that z is the length of S. Observe also that the length of C9e is

 de = C liskl.
 k=l

 We deduce immediately from Theorem 2 the following extension of the well-known
 identity of Sparre Andersen [2] (the latter corresponds to the special case 1 =0).

 Corollary 1. The random variables z and de? have the same law under P( -I I).

 3.3. The Wendel-Port-Dassios identity for chains with exchangeable increments. For
 every k =0, --, n, we introduce the (k, n)th quantile of S:

 Mk,n(S) = inf {x E "R: Z 1Is~ x =k} .
 Our next result is an extension of Theorems 1 and 2 of Dassios [7]; see also Wendel [20]

 and Port [18]. The argument is essentially a variation of that used by Embrechts et al.
 [12].

 Corollary 2. Under P('I ? ), the variables

 Mk,n(S) and max Si+ min (Sj+k-Sk)
 Oj<k Oj<_n-k

 have the same distribution.

 Proof. Fix 1 > O, so that {Mk,n(S) > l} = {d' < k}. According to Corollary 1, the
 conditional probability given 9 of this event is the same as that of {z < k}.
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 Two chain-transformations and their applications to quantiles 891

 On the other hand,

 z<k~ min Sk+j-- min S, >1 0=j5n-k O5j=k

 + min (Sk + j-Sk)- min (Sj-Sk)>l
 O0=j:5_n-k O05j<=k

 o max Sj + min (Sk+j- Sk) > l,
 O<0j=k 05 j?n-k

 where S = (s,',., -Sn) is the sequence of the partial sums corresponding to the permutation
 ?k, ?k-1,"', 1, 1k+1,"', n of the increments of S. Since S and S have the same law conditionally on ? we conclude that

 P(Mk,n(S) > 1 1)=P (max Sj+ min (S,+k- Sk) > . 0( j5_k O0=j=n-k /

 Finally, denote by S=(S0,"', S) the sequence of the partial sums of -4~,,,-~. Then note that

 max S = - min (S+k- Sk), min (Sj+k - Sk)= - max Si
 O=5 jn-k O5jin-k O=j=k O j5_k

 and that

 Mnk,,(S ) > 1# Mk,,,(S)< -l.
 We now deduce from above that

 P(Mk,,(S) < -11 W) = P(M,-_k,(S) > 11 W)

 = Po max Sj + min (Sj+,_,-S_,) > 1 )
 S0Ojn-k 0 Ij!k

 - P max Sj+ min (Sj+k-Sk)<--lI,
 (0 j!k 05j5n-k

 which completes the proof.

 4. Levy processes

 Using approximations based on discrete time skeletons, one can establish a version

 of Corollaries 1 and 2 for cidlig processes with exchangeable increments (see Remark
 2 in [7]). However, the continuous time version of Theorem 2 involves certain stochastic

 integrals which only make sense for semimartingales. Levy processes and their bridges
 are prototypes of semimartingales with exchangeable increments (see e.g. Knight [14]),
 and for the sake of simplicity, we shall focus on that case.

 Throughout this section, X=(Xe, 0 t ? 1) stands for a real-valued Levy process
 started from X0 =0. We first recall some basic features about the semimartingale local
 times of X, referring to Meyer [15], Protter [19] and Yor [22] for a complete account.
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 We fix a real number /I 0 and use the notation x+'- for the positive/negative part of a
 real number x. The local time at level 1 of X is the continuous increasing process
 L'= (Li, O ? t ? 1) given by the Meyer-Tanaka formulae

 (Xt - )- -l-=- I = l :xs_<=ldXs + ,t + LL

 (of course, l = 1 and l- = 0 since 1> 0), with

 it= E (lIx, stz(Xs-l)++llx,_->l(Xs-l)-). O<s<t

 We next consider the times spent by the Levy process in (1, oo) and in (- oc, 1],
 respectively:

 t lxs>1}ds, d4e = lfx,<_Ids
 and their inverses:

 aE = inf{s : 4d > t}, ae = inf{s : d4 > t}.

 We then introduce the processes Xe = (X, 0 ? t < d~) and Xe =(Xe, O0 t < 41dE) which
 are given by

 X = X. + C (1tx,:!j(Xs- -1)+ +14x,>,)(Xs- -l)-) + L' (aO)
 0<s<.

 Xe= X. + (x> -l)- + 1{x,>1i(Xs- -1 )) -L!) (aE)
 0<s<-

 (we stress that in the sums, the left and right limits are inverted in comparison with the
 Meyer-Tanaka formulae).
 Now, denote the last instant when X-1 is less than or equal to the overall infimum

 of X by

 z = sup {t:X,-l inf X,.

 We split X at time z into the post-z process X:

 ax,=X,,,-X,, O t < 1- z,

 and the reversed pre-z process X:
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 Two chain-transformations and their applications to quantiles 893

 X,= X-_, -Xt , 0 < t < T.

 The following theorem rephrases Theorem 3.1 of [4] when 1 = 0, and Theorem 2 of [12]
 when Xis a Brownian motion with drift (see also [3] when both = 0 and Xis a Brownian
 motion with drift).

 Theorem 3. The pairs of processes (-_X, X) and (Xe, Xe) have the same law condi-
 tionally on X,.

 Theorem 3 can be easily deduced from Theorem 2 by approximation; the argument
 is merely a variation of that developed in Section 3 of [4]. We also mention that one
 can also establish a 'predictable' companion; which extends Theorem 1 of Doney [11].

 Comparing the lifetime of X with that of Xe immediately yields the following version

 of Corollary 1 for continuous times (for l =0, it merely rephrases the Sparre Andersen
 identity in continuous time; see e.g. Theorem 1.4 in [14] or [17]).

 Corollary 3. The random variables z and sd have the same law conditionally on X,.

 Finally, an argument similar to that in the proof of Corollary 2 explains Theorem 4
 of Dassios [7].

 5. Explicit formulae in the spectrally one-sided case

 When a Levy process X has no negative jumps, many general formulae of fluctuation
 theory become explicit. Here, we will see that the law of

 MU,=inf x": lxs<x}ds u , u [0, t], t t 0,

 can be specified in terms of the Laplace exponent / of X, which is given by the identity

 E(exp { - AX,) = exp{ t (1)}, A > 0.

 It is well known that the first passage process T, = inf{ t : X, ? - x} (x > 0), is a subordi-
 nator and that its Laplace exponent D,

 (7) E(exp{ - yTx}) = exp{ - xD(y)}, y ?0,

 coincides with the right-inverse of /:

 On the other hand, the double Laplace transforms of the infimum and of the supremum

 up to time t, respectively M0,, = inf,=, X, and M,, =sup,, X,, are given for X, p > 0 by
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 (8) E (pe-PY e Modt = 1

 (9) E ( e 0Y e-Je-Mdt = -YI 1 -
 See Theorem 4a in Bingham [5]. Let Mt, and M-,, be respectively the positive and the
 negative part of M,,, then we have the following generalization of (8) and (9).

 Theorem 4. If the Levy process X has no negative jumps then, for all 2, p, a > 0,

 E 4ue-0 a e-u e  r du dt
 (10) __ x

 SD( ) D() 1

 (11) E e-0 ae-e - du dt = -- . )

 Remark. Let M,, (-X) be the process M.,, defined relatively to the dual process
 -X; then the relation

 MU, ((- X) = - Mt_ , (X)

 permits us to deduce the corresponding result for Levy processes with no positive jumps.

 Proof. The function u- M,,,, u E [0, t] is the inverse of the function 1U d (1),
 1 e I, therefore

 t 0 0
 ae - e -e- ,tdu= a e-{"?)dd( (1) + ae -`-'a(')ddE(1) S- 00 t

 and after an integration by parts,

 .e-U e-al+du= 1- e- -"?'')dl.

 Taking expectations, we get

 (12) E ( Ie-( ae e-,.du dt =1- 2e- E ( e-I-G*PN)dt dl.

 In the same way, we get for the negative part
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 E (o pe-" ( e- -AM e- "du dt (13)

 = 0 e-(E j 9e - ,A(l)(1 - et)dt) dl.

 To calculate the right-hand side of (12), we apply the continuous time analogue of
 Lemma 1 (see the remark in the previous section). Set

 T?(x)= inf{t: :9 < -x}, sup" = sup Y?.
 sit

 Then, for all t E [0, 4d(1 )] and 1E GR,

 T?(supG - 1) = o - t.

 By an argument similar to that in the proof of Theorem 1, we may suppose that the

 Levy process is centered. An integration by parts gives

 a e-(a+ )t-*Ipa-t)dt = 1-p e-t- -"N)dt

 0 fo
 f= 0o e-{(a+ 0e- pT(supP-1)dt,

 and taking expectations, we get

 (14) E ({ ie--sIP(l)dt = 1-E ae-" ( ae ' e-pTeT(supP-)dt) .

 Let q,+,(dx) be the probability measure with Laplace transform

 e- q, ,(dx) = a+ a+

 ) a + OW- ((D) 1 -(a + y)
 We deduce from (7), (9), and from the independence between 9ID and Je that, for all

 l> __,

 E({[=11-a E ({0e-T(-l)q +,(dx))

 = 1 q .([0, I]) e*("r e-)+(dx) .

 Then, it follows from (12) that
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 896 J. BERTOIN, L. CHAUMONT AND M. YOR

 E (jo e- o e- -jee-udu dt)
 a I e-q,(dl e-()x -(-D("))'dl q+(dx) ,

 and we deduce (10) from (9).
 In the same way, it follows from (7) and (14) that, for all 1 > 0,

 E ({ e--.)dt =l 1- E ae-(J C)' e-(e(p)(suPP- )dt ,

 and according to (9):

 E_ ( e-I-P()dtI) = I -1 (a + y)- e "
 Finally, using (13), this proves the identity (11).

 Remark. Alternatively, the formulae for the double Laplace transform of dre(l)
 which have been obtained above, could also be deduced from Theorem 1 of Doney [10].
 This yields another proof of Theorem 4.
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