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AND THE LAMPERTI REPRESENTATION

M. E. CABALLERO,∗ Universidad Nacional Autónoma de México

L. CHAUMONT,∗∗ Université Pierre et Marie Curie

Abstract

By variously killing a stable Lévy process when it leaves the positive half-line,
conditioning it to stay positive, and conditioning it to hit 0 continuously, we obtain
three different, positive, self-similar Markov processes which illustrate the three classes
described by Lamperti (1972). For each of these processes, we explicitly compute the
infinitesimal generator and from this deduce the characteristics of the underlying Lévy
process in the Lamperti representation. The proof of this result bears on the behaviour at
time 0 of stable Lévy processes before their first passage time across level 0, which we
describe here. As an application, for a certain class of Lévy processes we give the law of
the minimum before an independent exponential time. This provides the explicit form of
the spatial Wiener–Hopf factor at a particular point and the value of the ruin probability
for this class of Lévy processes.
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1. Introduction and preliminary results

The stochastic processes which are considered in this work take their values in the Skorokhod
space D of càdlàg trajectories (those that are continuous from the right with left limits). We
define this set as follows: � := ∞ being the cemetery point, a function ω : [0,∞) → R ∪�
belongs to D if and only if

• for all t ≥ ζ(ω), ωt = �, where ζ(ω) := inf{t : ωt = �} is the lifetime of ω ∈ D and
inf ∅ = ∞;

• for all t ≥ 0, lims↓t ωs = ωt ; and

• for all t ∈ (0, ζ(ω)), lims↑t ωs := wt− is a finite real value.

The space D is endowed with the Skorokhod’s J1 topology. We denote by X : D → D the
canonical process of the coordinates and by (Ft ) the natural Borel filtration generated by X,
i.e. Ft = σ(Xs, s ≤ t). A probability measure Px on D is the law of a Lévy process if (X,Px)
starts from x, i.e. Px(X0 = x) = 1, and has independent and homogeneous increments. Note
that (X,Px) = (x+X,P0) and that the lifetime of (X,Px) is either almost surely (a.s.) infinite

Received 30 March 2006; revision received 31 August 2006.
∗ Postal address: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico 04510 DF.
Email address: emilia@servidor.unam.mx
∗∗ Postal address: Laboratoire de Probabilités et Modèles Aléatoires, Université Pierre et Marie Curie, 4 Place Jussieu,
75252 Paris Cedex 05, France. Email address: chaumont@ccr.jussieu.fr

967



968 M. E. CABALLERO AND L. CHAUMONT

or a.s. finite. It is well known that, for any Lévy process (X,Px) with finite lifetime ζ(X),
there exists a Lévy process (X′,Px) with infinite lifetime such that, under Px , the random
variable ζ(X) is exponentially distributed and independent of X′ and, Px-a.s., Xt = X′

t if
t < ζ(X). Furthermore, the parameter of the law of ζ(X) under Px does not depend on x.

A positive (R+-valued), self-similar Markov process (PSSMP) (X,Px), x > 0, is a strong
Markov process with paths in D which possesses a scaling property: there exists a constant
α > 0 such that, for any b > 0,

the law of (bXb−αt , t ≥ 0) under Px is Pbx .

These processes are much involved in many areas of probability theory. For instance, the
continuous-state branching process obtained as the weak limit of a rescaled discrete branching
process is a PSSMP which is associated to a self-similar Lévy tree; see [9]. These processes
also appear in fragmentation theory: the mass process of a self-similar fragmentation process
is itself a PSSMP [2]. The PSSMPs that we are going to study here have recently been obtained
in [5] as limits of rescaled random walks whose laws are in the domain of attraction of a stable
law, after they are conditioned to stay positive or conditioned to hit 0 at a finite time; see
Sections 3.2 and 3.3, below.

According to Lamperti [10], the set of PSSMPs splits into three exhaustive classes which
can be distinguished from each other by comparing their first hitting times at 0, namely S =
inf{t > 0 : Xt = 0}. This classification may be summarized as follows.

• C1 is the class of PSSMPs such that S = ∞, Px-a.s. for all starting points x > 0.

• C2 is the class of PSSMPs for which S < ∞ andXS− = 0, Px-a.s. for all starting points
x > 0. Processes of this class hit the level 0 in a continuous way.

• C3 is the class of PSSMPs for which S < ∞ and XS− > 0, Px-a.s. for all starting
points x > 0. These processes hit 0 through a negative jump.

The main result of [10] asserts that any PSSMP may, up to its first hitting time at 0, be
expressed as the exponential of a Lévy process, time changed by the inverse of its exponential
functional. Then the underlying Lévy process in the so-called Lamperti representation of
(X,Px) possesses specific features depending on the class to which (X,Px) belongs. More
formally, let (X,Px) be a PSSMP with index α > 0 starting from x > 0, and write the canonical
process X in the following form, where, for t < S, τ(t) = inf{s ≥ 0 : ∫ s

0 exp(αξu) du ≥ t}:
Xt = x exp(ξτ(tx−α)), 0 ≤ t < S. (1)

Then, under Px , ξ = (ξt , t ≥ 0) is a Lévy process starting at 0 whose law does not depend on
x > 0 and such that

• if (X,Px) ∈ C1 then ζ(ξ) = ∞ and lim supt→∞ ξt = ∞, Px-a.s.;

• if (X,Px) ∈ C2 then ζ(ξ) = ∞ and limt→∞ ξt = −∞, Px-a.s.; and

• if (X,Px) ∈ C3 then ζ(ξ) < ∞, Px-a.s.

Note that, for any t <
∫ ∞

0 exp(αξs) ds,

τ(t) =
∫ xαt

0

ds

Xαs
, Px-a.s.,
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so (1) is invertible and yields a one-to-one relation between the class of PSSMPs killed at time S
and one of the Lévy processes.

Now we recall another important result of [10], which gives the explicit form of the generator
of any PSSMP in terms of its underlying Lévy process. Let (X,Px) and ξ be any processes
related as in (1). We will denote by K and L their respective generators and by DK and DL

the respective domains of K and L. Recall that DL contains all the functions with continuous
second derivatives on [−∞,∞], and that if f̃ is such a function then L acts as follows for
x ∈ R, where a ∈ R and σ > 0:

Lf̃ (x) = af̃ ′(x)+ σ

2
f̃ ′′(x)+

∫
R

[f̃ (x + y)− f̃ (x)− f̃ ′(x)l(y)]�(dy)− bf̃ (x). (2)

The measure �(dx) is the Lévy measure of ξ on R, such that �({0}) = 0 and
∫
(1 ∧

|x|2)�(dx) < ∞. The function l(·) is a bounded Borel function such that l(y) ∼ y as
y → 0. In the last term, b ≥ 0 corresponds to the killing rate of ξ , i.e. the parameter of ζ(ξ)
(b = 0 if ξ has infinite lifetime). We use primes to denote differentiation. It is important to
note that in (2) the choice of the function l(·) is arbitrary and the coefficient a is the only one
which depends on this choice.

Theorem 6.1 of [10] may be stated as follows.

Theorem 1. ([10].) If f : [0,∞] → R is such that f , xf ′, and x2f ′′ are continuous on [0,∞],
then they belong to the domain, DK , of the infinitesimal generator of (X,Px), which acts as
follows for x > 0, where 	(du) = �(du) ◦ log u for u > 0:

Kf (x) = 1

xα

∫
R+

[f (ux)− f (x)− f ′(x)l(log u)]	(du)

+ ax1−αf ′(x)+ σ

2
x2−αf ′′(x)− bx−αf (x).

This expression determines the law of the process (Xt , 0 ≤ t ≤ S) under Px .

To present the results of this paper, let us first consider two examples in the continuous case.
The first one is when (X,Px) is the standard real Brownian motion absorbed at level 0. The
process (X,Px) is a PSSMP which belongs to the class C2 and has index α = 2, and it is well
known (see, e.g. [6]) that its associated Lévy process in the Lamperti representation (1) is given
by ξ = (Bt − t/2, t ≥ 0), where B is a standard Brownian motion. The second example is
when (X,Px) is the Brownian motion conditioned to stay positive. This process corresponds to
the three-dimensional Bessel process, i.e. the norm of a three-dimensional Brownian motion.
Here (X,Px) is a PSSMP which belongs to the class C1 and has index α = 2, and the underlying
Lévy process is given by ξ = (Bt + t/2, t ≥ 0).

Similarly, it is possible to obtain PSSMPs from any stable Lévy process (X,Px) with index
α ∈ (0, 2), through the same operations. More precisely, by killing (X,Px) when it enters the
negative half-line, i.e. considering

Xt1{t<T } with T = inf{t ≥ 0 : Xt ≤ 0},
we obtain a PSSMP (X,Px) which belongs to the class C2 or C3 according respectively to
whether or not (X,Px) has negative jumps. Also, by conditioning a stable Lévy process to stay
positive, i.e. taking

Px(·) = lim
t→∞ Px(· | T > t), x > 0,
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we obtain a PSSMP (X,Px) belonging to C1. We may also give an interpretation for the
processes conditioned to hit 0 continuously: such processes belong to C3.

The main goal of this paper is to identify the underlying Lévy process in the Lamperti
representation for each of these processes by computing their infinitesimal generators and using
Lamperti’s result recalled above. This will be done in Section 3. In Section 4 we deduce from the
results of Section 3 the law of the minimum achieved before an independent exponential time has
elapsed for an important class of Lévy processes. This gives an expression for the Wiener–Hopf
factor of these Lévy processes at a particular point, i.e. the law of infs≤e(k) ξs , where ξ is a Lévy
process whose characteristics are described in Corollary 1 and e(k) is an independent random
variable with a special parameter k. We also find the law of the overall minimum for another
class of Lévy processes, whose law is given by Corollary 2. This calculation is equivalent to the
problem of finding the explicit form of the corresponding ruin probability, which has recently
been studied for other classes of Lévy processes by Lewis and Mordecki [11]. The next section
is devoted to further preliminary results, the main one of which is of some interest in its own
right, independently of the rest of the paper. It extends a result of Bingham [3] and Rivero [12]
which describes the asymptotic behaviour of Px(T ≤ t) as t goes to 0, i.e. the small tail of first
passage times of stable Lévy processes.

2. The small tail of first passage times of stable Lévy processes

In the remainder of the paper, (X,Px)will denote a stable Lévy process with index α ∈ (0, 2)
starting at x ∈ R. Since stable Lévy processes have infinite lifetimes, the characteristic exponent
of (X,Px) is defined by E0[exp(iλXt)] = exp(tψ(λ)), t ≥ 0, λ ∈ R, where

ψ(λ) = iaλ+
∫

R

(eiλy − 1 − iλy1{|y|<1})ν(y) dy. (3)

The density of the Lévy measure is

ν(y) = c+y−α−1 1{y>0} +c−|y|−α−1 1{y<0},

where c+ and c− are two nonnegative constants such that c+ + c− > 0. Note also that the
constant a is related to c+, c−, and α as follows: a = (c+ − c−)/(1 − α), α �= 1. In the
case where α = 1, we will suppose that (X,Px) is a symmetric Cauchy process, so we have
c+ = c− and a = 0. We suppose moreover that neither (X,Px) nor (−X,Px) is a subordinator.
We emphasize that, although (3) is valid for any α ∈ (0, 2), when α < 1 the drift part of this
expression may be inserted in the integral, whence the characteristic exponent has the simpler
form ψ(λ) = ∫

R
(eiλy − 1)ν(y) dy.

Recall that the characteristic exponent of (X,P) may be written in the following form for
α ∈ (0, 1) ∪ (1, 2):

E0[exp(iλXt)] = exp(−ct |λ|α[1 − iβ sgn(λ) tan(πα/2)]), λ ∈ R. (4)

Here
c = −(c+ + c−)�(−α) cos

πα

2
, β = c+ − c−

c+ + c−
, (5)

and we use the notation

�(−α) =
{

−α−1�(1 − α) if 0 < α < 1,

α−1(α − 1)−1�(2 − α) if 1 < α < 2.
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We refer the reader to [14] or [13, Theorem 14.10 and its proof, pp. 83–85] for more details.
It appears from the above expressions for the characteristic exponent that the law of any stable
Lévy process may be identified from the three constants c+, c−, and α.

It has been proved by Bingham [3, Proposition 3b and Theorem 4b] and Rivero [12,
Section 2.3] that, for any x > 0,

lim
t↓0

1

t
Px(T ≤ t) = k

xα
,

where the constant k was explicitly computed in [3] and is given by

k = c

(
1 + β2 tan2 πα

2

)1/2

�(α)
sin(παρ)

π
. (6)

By definition ρ := P0(X1 < 0), and it is well known from [14] that this constant has the
expression

ρ = 1

2
− (πα)−1 arctan

(
β tan

πα

2

)
. (7)

Note that we always have αρ ≤ 1. Moreover, we can easily check that (X,Px) has no negative
jumps if and only if one (and, thus, all) of the three following conditions holds:

c− = 0 ⇐⇒ β = 1 ⇐⇒ αρ = 1.

For α = 1, (4) and (6) can be reduced to E0[exp(iλXt)] = exp(−c+πt |λ|) and k = c+ = c−,
respectively. (Note that in [3] the value of k was not defined for α = 1, although this case was
not explicitly excluded.) We emphasize that Rivero’s result [12] concerns the more general
setting of positive, self-similar Markov processes. Also, in the case where (X,Px) has no
negative jumps, we have k = 0, but [3, Proposition 3b] gives an explicit expression for the
asymptotic behaviour of Px(T < t) as t ↓ 0.

The next lemma implies and completes [3, Theorem 4b]. In particular, it shows that, when
c− > 0, Px(T ≤ t) = Px(infs≤t Xs ≤ 0) and Px(Xt ≤ 0) are equivalent as t tends to 0.
Moreover the constant k recalled in (6) may be expressed in a much simpler form. An easy
computation using (5), (6), and the identity −α�(−α)�(α) = π/ sin πα, forα ∈ (0, 1)∪(1, 2),
shows that the two forms coincide, i.e. that k = c−α−1.

Lemma 1. For any x > 0,

lim
t↓0

1

t
Px(T ≤ t) = lim

t↓0

1

t
Px(Xt ≤ 0) = c−

αxα
.

In particular, limt↓0(1/t)Px(T ≤ t, Xt ∈ (0,∞)) = 0.

Proof. The second equality is a direct consequence of the fact that (1/t)P0(Xt ∈ dz)
converges vaguely to ν(z)dz on {z : |z| > K} for every K > 0, as t ↓ 0; see, e.g. [1,
Exercise I.1].

To obtain the first equality, it suffices to show that

lim
t↓0

1

t
Px(T ≤ t, Xt ∈ (0,∞)) = 0.
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To this aim, fix 0 < δ < x and write

Px(T ≤ t, Xt ∈ (0,∞)) = Px(T ≤ t, Xt ∈ (0, δ])+ Px(T ≤ t, Xt > δ). (8)

Since

lim
t↓0

1

t
P0(Xt ∈ (−x, δ − x]) = c−

α
((x − δ)−α − x−α),

we deduce for the first term on the right-hand side of (8) the following bound, which tends to 0
as δ ↓ 0:

lim sup
t↓0

1

t
Px(T ≤ t, Xt ∈ (0, δ]) ≤ c−

α
((x − δ)−α − x−α).

To treat the second term of (8), let us write

Px(T ≤ t, Xt > δ) =
∫ 0

−∞

∫ t

0
Px(T ∈ ds, Xs ∈ dy)Px(Xt > δ | T = s, Xs = y)

=
∫ 0

−∞

∫ t

0
Px(T ∈ ds, Xs ∈ dy)Py(Xt−s > δ), (9)

where the second equality follows from the Markov property. Again, since (1/t)P0(Xt ∈ dz)
converges vaguely to ν(z)dz on {z : |z| > K} for every K > 0, there exists a constant C such
that, for sufficiently small t ,

Py(Xt−s > δ) ≤ Ct

δα
for all s ∈ (0, t) and y ≤ 0.

From (9), we have

Px(T ≤ t, Xt > δ) ≤ Px(T ≤ t)
Ct

δα
,

which proves that limt↓0(1/t)Px(T ≤ t, Xt > δ) = 0, as required.

This result will be used in Section 3.1 to compute the infinitesimal generator of the killed
stable Lévy process.

3. Killed or conditioned stable processes as PSSMPs

In this section we compute the characteristics of the underlying Lévy process in the Lamperti
representation of a PSSMP (X,Px) when this process is either a stable Lévy process which is
killed when it first hits the positive half-line (Section 3.1), a stable Lévy process conditioned
to stay positive (Section 3.2), or a stable Lévy process conditioned to hit 0 continuously
(Section 3.3). If (X,Px) is a stable subordinator then it can be considered to be automatically
conditioned to stay positive, and in this case the characteristics of the underlying Lévy process
are those computed by Lamperti [10, Section 6]. Except in this situation, the cases where
(X,Px) or (−X,Px) is a subordinator are not relevant to this study, so they will be implicitly
excluded in the sequel. Also, as already mentioned in the introduction, since our results are
well known when (X,Px) is the standard Brownian motion, we will always suppose that α �= 2.
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3.1. The killed process

In this subsection we suppose that (X,Px), x > 0, is a stable Lévy process with index
α ∈ (0, 2)which is killed when it first leaves the positive half-line. To define this process more
formally, let (X,Px) be a stable Lévy process starting at x > 0. We use the same notation
for the characteristics of (X,Px) as in Section 2. Recall that T = inf{t ≥ 0 : Xt ≤ 0}; the
probability measure Px is thus the law under Px of the process

Xt1{t<T }, t ≥ 0. (10)

(Note that, rather than the killed process, we could also call (X,Px) the initial Lévy process
(X,Px) absorbed at level 0). It is not difficult to see that the process (X,Px) is a positive
self-similar Markov process with index α such that S < ∞ Px-a.s. Furthermore, if (X,Px) has
no negative jumps then (X,Px) ends continuously at 0, so it belongs to the class C2. If (X,Px)
has negative jumps then it is known that it crosses the level 0 for the first time by jumping, so
(X,Px) ends with a jump at 0 and belongs to the class C3. We will compute the infinitesimal
generator of (X,Px) and deduce from its expression the law of the underlying Lévy process ξ
associated with (X,Px) in the Lamperti representation.

Specializing the expression given in the introduction for stable Lévy processes, we obtain
the infinitesimal generator A, with domain DA, of the process (X,Px):

Af (x) = af ′(x)+
∫

R

[f (x + y)− f (x)− yf ′(x)1{|y|<1}]ν(y) dy, f ∈ DA.

Here we recall (from the start of Section 2) that ν(y) = c+y−α−1 1{y>0} +c−|y|−α−1 1{y<0} is
the density of the Lévy measure and that c− ≥ 0, c+ ≥ 0, and a = (c+ − c−)/(1−α) if α �= 1,
and a = 0 and c+ = c− if α = 1.

In the sequel we will denote by K the infinitesimal generator of the killed process (X,Px).
Note that, since the state space of this process is [0,∞) and 0 is an absorbing state, the domain
of K , which we denote by DK , is included in the set {f : [0,∞) → R, f (0) = 0}. From
the expression for the infinitesimal generator A, we can deduce the expression for K , as the
following result shows.

Theorem 2. Let (X,Px) be the PSSMP defined by (10), and let K be its generator. Letf ∈ DK

be such that the function f̃ defined on R by

f̃ (x) =
{
f (x) if x > 0,

0 if x ≤ 0,

belongs to DA. Then

Kf (x) = Af̃ (x) for x > 0 and Kf (0) = 0.

The action of the generator K can also be written as

Kf (x) =
∫

R+
1

xα
[f (ux)− f (x)− xf ′(x)(u− 1)1{|u−1|<1}]ν(u− 1) du

+ ax1−αf ′(x)− c−α−1x−αf (x).

Remark 1. We emphasize that the set of functions which is used in the above statement to
describe the generator K contains at least all functions of the set {f : [0,∞) → R, f (0) = 0}
such that f̃ ∈ C2

b (R).
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Proof of Theorem 2. Recall that T = inf{t ≥ 0 : Xt ≤ 0} and S = inf{t ≥ 0 : Xt = 0}, and
let f be a function defined as in the statement of the theorem. Then note that

Ex[f (Xt )] = Ex[f (Xt ) 1{t<S} +f (0)1{t≥S}]
= Ex[f̃ (Xt ) 1{t<T }]
= Ex[f̃ (Xt )] − Ex[f̃ (Xt ) 1{T≤t}].

So, for any x > 0, the generator of the killed process (X,Px) is given by

Kf (x) = lim
t→∞

1

t
Ex[f (Xt )− f (x)]

= lim
t→0

1

t
[Ex[f̃ (Xt )] − f̃ (x)] − lim

t→0

1

t
Ex[f̃ (Xt ) 1{T≤t}].

However, from Lemma 1 and the fact that f̃ is bounded and vanishes on R−, we have

lim
t→0

1

t
Ex[f̃ (Xt ) 1{T≤t}] = 0.

This proves our first assertion. (The value of Kf at 0 is easily computed.)
To prove the second assertion of the theorem, write

Kf (x) = af ′(x)+
∫

R

[f̃ (x + y)− f (x)− yf ′(x)1{|y|<1}]ν(y) dy

and let I denote the integral in this equation. Then make the change of variable y = x(u− 1),
to obtain

I = 1

xα

∫
R

[f̃ (xu)− f (x)− x(u− 1)f ′(x)1{|x(u−1)|<1}]ν(u− 1) du.

Now rewrite I in the form

I = 1

xα

∫
u>0

[f̃ (xu)− f (x)− x(u− 1)f ′(x)1{|u−1|<1}]ν(u− 1) du

+ 1

xα

∫
u>0

[x(u− 1)f ′(x)(1{|u−1|<1} − 1{|x(u−1)|<1})]ν(u− 1) du

+ 1

xα

∫
u<0

[f̃ (xu)− f (x)− x(u− 1)f ′(x)1{|x(u−1)|<1}]ν(u− 1) du

and respectively denote these integrals I1, I2, and I3. Integral I1 is in a suitable form as it is
but I3 requires additional calculations:

I3 = −f (x)
xα

∫
u<0

ν(u− 1) du− 1

xα

∫
u<0

x(u− 1)f ′(x)1{|x(u−1)|<1}ν(u− 1) du.

Now suppose that α �= 1 (the case α = 1 being much simpler). We may verify (after careful
calculations) that the sum of I2 and the second term of I3 gives

c+ − c−
1 − α

(1 − xα−1)
f ′(x)
xα−1 = af ′(x)(x1−α − 1),
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since a = (c+ − c−)/(1 − α). We finally calculate the first term of I3:

−f (x)
xα

∫
u<0

ν(u− 1) du = −f (x)
xα

c−
α
.

Then, by adding the different parts together, we find that

Kf (x) = a

xα−1 f
′(x)+ I1 − f (x)

xα

c−
α
,

which ends the proof.

Let ξ be the underlying Lévy process in the Lamperti representation of (X,Px), as it is stated
in (1). Recall that ξ may have a finite lifetime, so its characteristic exponent � is defined by

E[exp(iλξt )1{t<ζ(ξ)}] = exp(t�(λ)), λ ∈ R.

Using Lamperti’s result (recalled in Theorem 1) and Theorem 2, we may now give the explicit
form of the generator of ξ in the special setting considered in this subsection.

Corollary 1. Let ξ be the Lévy process in the Lamperti representation (1) of the PSSMP (X,Px)
defined in (10). The infinitesimal generator, L, of ξ , with domain DL, is given by

Lf (x) = af ′(x)+
∫

R

[f (x + y)− f (x)− f ′(x)(ey − 1)1{|ey−1|<1}]π(y) dy − c−α−1f (x)

for any f ∈ DL and x ∈ R, whereπ(y) = eyν(ey−1), y ∈ R. Equivalently, the characteristic
exponent of ξ is given by

�(λ) = iaλ+
∫

R

[eiλy − 1 − iλ(ey − 1)1{|ey−1|<1}]π(y) dy − c−α−1.

The process (X,Px) belongs to the class C3 if c− > 0 and belongs to the class C2 if c− = 0. In
the first case the Lévy process ξ has a finite lifetime with parameter c−α−1, and in the second
case has an infinite lifetime.

It is rather unusual to see l(y) = (ey − 1)1{|ey−1|<1} as the compensating function in the
expression of the infinitesimal generator or the characteristic exponent of a Lévy process.
However, as noted in the introduction, any function l such that l(y) ∼ y as y → 0 may be
chosen, and the more classical function l(y) = y1{|y|<1} would have the effect of replacing the
parameter a by one whose expression is rather complicated.

Let us consider the unkilled version of ξ , i.e. the Lévy process ξ̃ with characteristic exponent

�̃(λ) = iaλ+
∫

R

[eiλy − 1 − iλ(ey − 1)1{|ey−1|<1}]π(y) dy.

A natural question to ask is whether the process ξ̃ oscillates, drifts to −∞, or drifts to ∞. Let
us show that each of these three behaviours may pertain depending on the relative values of c−,
c+, and α. From the expression for �̃, we see that ξ̃ is integrable and that

E[ξ̃1] = −i�̃′(0) = a + c+
(∫ log 2

0

(1 + y − ey)ey

(ey − 1)α+1 dy +
∫ ∞

log 2

yey

(ey − 1)α+1 dy

)

+ c−
∫ 0

−∞
(1 + y − ey)ey

(1 − ey)α+1 dy. (11)
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(Here P can be any of the measures Px , x > 0). On the one hand, it is clear from the classification
recalled in the introduction that, when (X,Px) has no negative jumps (i.e. c− = 0), the Lévy
process ξ̃ = ξ drifts towards −∞, meaning that

c+
1 − α

+ c+
(∫ log 2

0

(1 + y − ey)ey

(ey − 1)α+1 dy +
∫ ∞

log 2

yey

(ey − 1)α+1 dy

)
< 0 (12)

for all c+ > 0 and α ∈ (1, 2). (Recall that, in the spectrally one-sided case, we necessarily
have α ∈ (1, 2).) On the other hand, when (X,Px) has no positive jumps (c+ = 0), it is easy to
derive from (11) that, for any fixed c− > 0, limα↓1 E[ξ̃1] = ∞ and limα↑2 E[ξ̃1] = −∞. Since
α �→ E(ξ̃1) is continuous, there are values of α ∈ (1, 2) for which ξ̃ drifts to −∞, oscillates,
or drifts to ∞. This argument and (12) show that, for all c− > 0 and c+ > 0, there are values
of α ∈ (1, 2) for which ξ̃ drifts to −∞.

3.2. The process conditioned to stay positive

We again consider a stable Lévy process (X,Px) as defined as in Section 2. Formally, the
process (X,Px) conditioned to stay positive is an h-transform of the killed process defined in
Subsection 3.1, i.e.

P
↑
x (A) = h−1(x)Ex[h(Xt )1A1{t<T }], x > 0, t ≥ 0, A ∈ Ft , (13)

where h(x) = xαρ . The function h being positive and harmonic for the killed process,
(13) defines the law of a strong homogeneous Markov process. Moreover, this process is
(0,∞)-valued and it is clear that it inherits the scaling property with index α from (X,Px).
Hence, (X,P↑

x ) is an example of a PSSMP which belongs to the class C1. The following more
intuitive (but no less rigorous) construction of the law P

↑
x justifies us in referring to (X,P↑

x ) as
the Lévy process (X,Px) conditioned to stay positive:

P
↑
x (A) = lim

t→∞ Px(A | T > t), x > 0, t ≥ 0, A ∈ Ft .

We refer the reader to [7] for a general account on Lévy processes conditioned to stay positive.
In particular, it was proved in [7] that (X,P↑

x ) drifts to ∞ as t tends to ∞, i.e.

P
↑
x

(
lim
t→∞Xt = ∞

)
= 1. (14)

Let us also mention that this conditioning has a discrete-time counterpart for random walks.
Let µ be a law in the domain of attraction of the stable law (X1,P0) and let W↑ be a random
walk with law µ, conditioned to stay positive. Then the process (X,P↑

x ) may be obtained as
the limit in law of the process (n1/αW

↑
�nt�, t ≥ 0), as n tends to ∞ (where �x� denotes the

least-integer part of x). This invariance principle has recently been proved in [5]; see also [4]
for the case α = 2.

Since (X,P↑
x ) is an h-transform of the killed process (X,Px) defined in the previous

subsection, its infinitesimal generator, which we denote by K↑, may be derived from K as
follows:

K↑f (x) = 1

h(x)
K(hf )(x), x > 0, f ∈ DK↑ . (15)
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From (15) and Theorem 2, for x > 0 and f ∈ DK↑ we obtain

xαK↑f (x) = 1

xαρ

∫
R+

[(hf )(ux)− (hf )(x)− x(hf )′(x)(u− 1)1{|u−1|<1}]ν(u− 1) du

+ ax(hf )′(x)− c−α−1(hf )(x)

=
∫

R+
[uαρf (ux)− f (x)− (αρf (x)+ xf ′(x))(u− 1)1{|u−1|<1}]ν(u− 1) du

+ axf ′(x)+ (aαρ − c−α−1)f (x).

Let us denote by J the integral in the above equation and define ν↑(u) = uαρν(u− 1). Then

J =
∫

R+
[f (ux)− u−αρf (x)− (αρf (x)+ xf ′(x))u−αρ(u− 1)1{|u−1|<1}]ν↑(u) du

=
∫

R+
[f (ux)− f (x)− xf ′(x)(u− 1)1{|u−1|<1}]ν↑(u) du

+
∫

R+
[uαρ − 1 − αρ(u− 1)1{|u−1|<1}]ν(u− 1) duf (x)

+
∫

R+
(uαρ − 1)(u− 1)1{|u−1|<1}ν(u− 1) duxf ′(x).

The infinitesimal generator of the process (X,P↑
x ) is then given by

K↑f (x) = 1

xα

∫
R+

[f (ux)− f (x)− xf ′(x)(u− 1)1{|u−1|<1}]ν↑(u) du

+ (a + a1)x
1−αf ′(x)+ (aαρ + a2 − c−α−1)x−αf (x), (16)

where

a1 = c+
∫ 1

0

(1 + x)αρ − 1

xα
dx + c−

∫ 1

0

(1 − x)αρ − 1

xα
dx, (17)

a2 = c+
(∫ 1

0

(1 + x)αρ − 1 − αρx

xα+1 dx +
∫ ∞

1

(1 + x)αρ − 1

xα+1 dx

)

+ c−
∫ 1

0

(1 − x)αρ − 1 + αρx

xα+1 dx, (18)

and a and ρ are as given in Section 2.
Let us compute the constant a2 in terms of α, c−, and c+. When α < 1, with obvious

changes of variables and integration by parts, we have

a2 = c+
(∫ ∞

0

(1 + x)αρ − 1

xα+1 dx − αρ

∫ 1

0

dx

xα

)
+ c−

(∫ 1

0

(1 − x)αρ − 1

xα+1 dx + αρ

∫ 1

0

dx

xα

)

= c+
∫ ∞

0

(1 + x)αρ − 1

xα+1 dx + c−
∫ 1

0

(1 − x)αρ − 1

xα+1 dx − αρ
c+ − c−

1 − α

= c+ρ
∫ ∞

0
(1 + x)αρ−1x−α dx + c−

(
1

α
− ρ

∫ 1

0
(1 − x)αρ−1x−α dx

)
− αρ

c+ − c−
1 − α

= c+ρB(α(1 − ρ), 1 − α)+ c−(α−1 − ρB(αρ, 1 − α))− aαρ. (19)
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In the last equality, B(x, y) = �(x + y)−1�(x)�(y). Now let us check that

c+B(α(1 − ρ), 1 − α) = c−B(αρ, 1 − α). (20)

This is equivalent to

c+�(αρ)�(1 − αρ) = c−�(αρ)�(1 − αρ),

where ρ = 1 − ρ. From the identity �(x)�(1 − x) = π/ sin(πx), 0 < x < 1, we deduce
that (20) is equivalent to

β = sin(παρ)− sin(παρ)

sin(παρ)+ sin(παρ)
= tan[(1 − 2ρ)πα/2]

tan(πα/2)
,

which is correct according to (7). By putting (20) and (19) together, we obtain

a2 = c−α−1 − aαρ. (21)

For α = 1, we suppose that ρ = 1
2 , so the computation is easy and also gives (21). For

α ∈ (1, 2), we present the computation of the first term on the right-hand side of (18) only:∫ 1

0

(1 + x)αρ − 1 − αρx

xα+1 dx +
∫ ∞

1

(1 + x)αρ − 1

xα+1 dx

= lim
ε↓0

∫ ∞

ε

(1 + x)αρ − 1

xα+1 dx − αρ

∫ 1

ε

dx

xα

= lim
ε↓0

ρ

1 − α
ε1−α + ρ

∫ ∞

ε

(1 + x)αρ−1 − 1

xα
dx − αρ

1 − α

= lim
ε↓0

ρ

1 − α
ε1−α − ρ(αρ − 1)

1 − α

∫ ∞

ε

(1 + x)αρ−2 − 1

xα
dx − αρ

1 − α

= ρ
αρ − 1

α − 1
B(α(1 − ρ), 2 − α)− αρ

1 − α
.

The other term is computed similarly, and leads to

a2 = c+ρ
αρ − 1

α − 1
B(α(1 − ρ), 2 − α)+ c−

(
α−1 − ρ

αρ − 1

α − 1
B(αρ, 2 − α)

)
− aαρ,

which can also be reduced to (21).
Identity (21) shows that the killing rate in the expression, (16), for the generator K↑ vanishes,

which is in accordance with the fact that (X,P↑
x ) belongs to the class C1. In conclusion, the

expression of the infinitesimal generator of the process (X,P↑
x ) is given by

K↑f (x) = 1

xα

∫
R+

[f (ux)− f (x)− xf ′(x)(u− 1)1{|u−1|<1}]ν↑(u) du

+ (a + a1)x
1−αf ′(x).

As we did for (X,Px) in the previous subsection, we may now apply Theorem 1 together with
(in this case) (16) to compute the characteristics of the underlying Lévy process in the Lamperti
representation of (X,P↑

x ).



Conditioned stable Lévy processes and the Lamperti representation 979

Corollary 2. Let ξ↑ be the Lévy process in the Lamperti representation (1) of the PSSMP
(X,P

↑
x ) defined in (13). The infinitesimal generator, L↑, of ξ↑, with domain DL↑ , is given by

L↑f (x) = a↑f ′(x)+
∫

R

[f (x + y)− f (x)− f ′(x)(ey − 1)1{|ey−1|<1}]π↑(y) dy

for any f ∈ DL↑ and x > 0, where π↑(y) = e(αρ+1)yν(ey − 1), y ∈ R, and a↑ = a + a1, the
constant a1 being as defined in (17). Equivalently, the characteristic exponent of ξ↑ is given
by

�↑(λ) = ia↑λ+
∫

R

[eiλy − 1 − iλ(ey − 1)1{|ey−1|<1}]π↑(y) dy.

It follows from (14) that the underlying Lévy process ξ↑ drifts to ∞. The process being
integrable, this means in particular that 0 < E[ξ↑

1 ] = −i(�↑)′(0) < ∞.

3.3. The process conditioned to hit 0 continuously

LetW be an integer-valued random walk whose law is in the domain of attraction of the stable
law (X1,P0). For y ∈ Z \ {0}, define the law of the chain W↘

y as that of the random walk Wy

starting from y and conditioned to hit 0, as follows, where τ↘
(−∞,0] := inf{n : W↘

n ≤ 0} and
τ(−∞,0] := inf{n : Wn ≤ 0}:

(W↘
y (n), 0 ≤ n ≤ τ

↘
(−∞,0])

d= [(Wy(n), 0 ≤ n ≤ τ(−∞,0]) | Wy(τ(−∞,0]) = 0],
(W↘

y (n), n ≥ τ
↘
(−∞,0]) ≡ 0.

(Here, ‘ d=’ denotes equality in law.) It has recently been proved, in [5], that as n tends to ∞ the
rescaled linear interpolation of W↘

y , i.e.

(n−1/αW
↘
�n1/αx�(�nt�), t ≥ 0),

converges in law in the Skorokhod space to a Markov process which we will here call the Lévy
process (X,Px) conditioned to hit 0 continuously. Again, this process may be defined more
formally as an h-transform of the killed process (X,Px) introduced in Subsection 3.1. In this
case, the positive harmonic function related to (X,Px) is g(x) = xαρ−1 and, for x > 0, the
law, P

↘
x , of the conditioned process is defined by

P
↘
x (A, t < S) = g(x)−1 Ex[g(Xt )1A1{t<T }], (22)

P
↘
x (Xt = 0 for all t ≥ S) = 1,

for all x > 0, t ≥ 0, and A ∈ Ft . It was proved in [7] that the process (X,P↘
x ) reaches 0

continuously (perhaps by an accumulation of negative jumps if (X,Px) has negative jumps), i.e.,

P
↘
x (XS− = 0) = 1;

hence, (X,P↘
x ) is a PSSMP which belongs to the class C2. The infinitesimal generator of

(X,P
↘
x ) is given by

K↘f (x) = 1

g(x)
K(gf )(x), x > 0, f ∈ DK↘ .
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Trivially, when there are no negative jumps (i.e. αρ = 1), g ≡ 1 and the processes (X,Px)
and (X,P↘

x ) are the same. Calculations analogous to those in Subsection 3.2, replacing αρ by
αρ − 1, lead to

K↘f (x) = 1

xα

∫
R+

[f (ux)− f (x)− xf ′(x)(u− 1)1{|u−1|<1}]ν↘(u) du

+ (a + a3)x
1−αf ′(x)+ (a(αρ − 1)+ a4 − c−α−1)x−αf (x),

where

ν↘(u) = uαρ−1ν(u− 1),

a3 = c+
∫ 1

0

(1 + x)αρ−1 − 1

xα
dx + c−

∫ 1

0

(1 − x)αρ−1 − 1

xα
dx, (23)

a4 = c+
(∫ 1

0

(1 + x)αρ−1 − 1 − (αρ − 1)x

xα+1 dx +
∫ ∞

1

(1 + x)αρ−1 − 1

xα+1 dx

)

+ c−
∫ 1

0

(1 − x)αρ−1 − 1 + (αρ − 1)x

xα+1 dx.

Again, since (X,P↘
x ) belongs to C2, the killing rate, aαρ + a4 − c−α−1, of its generator

vanishes. This can be checked through calculations analogous to those in Subsection 3.2. The
expression for the infinitesimal generator of (X,P↘

x ) is found to be

K↘f (x) = 1

xα

∫
R+

[f (ux)− f (x)− xf ′(x)(u− 1)1{|u−1|<1}]ν↘(u) du

+ (a + a3)x
1−αf ′(x).

As in the previous subsections, we may now compute the characteristics of the underlying
Lévy process in the Lamperti representation of (X,P↘

x ).

Corollary 3. Let ξ↘ be the Lévy process in the Lamperti representation (1) of the PSSMP
(X,P

↘
x ) defined in (22). The infinitesimal generator, L↘, of ξ↘, with domain DL↘ , is given by

L↘f (x) = a↘f ′(x)+
∫

R

[f (x + y)− f (x)− f ′(x)(ey − 1)1{|ey−1|<1}]π↘(y) dy

for any f ∈ DL↘ and x ∈ R, where π↘(y) = eαρyν(ey − 1), y ∈ R, and a↘ = a + a3, the
constant a3 being as defined in (23). Equivalently, the characteristic exponent of ξ↘ is given by

�↘(λ) = ia↘λ+
∫

R

[eiλy − 1 − iλ(ey − 1)1{|ey−1|<1}]π↘(y) dy.

As noted above, the process (X,P↘
x ) belongs to the class C2 and, therefore, the underlying

Lévy process ξ↘ drifts to −∞; in particular, since this process is also integrable, we have
−∞ < E[ξ↘

1 ] = −i(�↘)′(0) < 0.

4. The minimum of ξ up to an independent exponential time

Using the same notation for (X,Px), (X,Px), and ξ as in Subsection 3.1, we here suppose
that (X,Px) has negative jumps, i.e. αρ < 1 (which is equivalent to c− > 0). Recall that
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the characteristics of ξ were computed in Corollary 1. The first result of this section is the
computation of an explicit form of the law of the overall minimum of ξ . Since ξ has a finite
lifetime, it has the same law as a Lévy process, say ξ̃ , that has an infinite lifetime and is killed
at an independent exponential time with parameter c−α−1. This allows us to show how the
Lamperti representation, together with classical results on undershoots of subordinators, leads
to the computation of the law of the minimum of ξ̃ up to an independent exponential time with
parameter c−α−1. The latter random variable is known as the spatial Wiener–Hopf factor of
the Lévy process ξ̃ ; see [8].

Set X = infs≤S Xs and ξ = infs≤ζ ξs , where we recall from the introduction that S =
inf{t : Xt = 0} and ζ ≡ ζ(ξ) is the lifetime of ξ . Then, on the one hand, from the Lamperti
representation (1), under Px the variables X and ξ are related as follows:

X = x exp(ξ) Px-a.s. (24)

On the other hand, let H be the downward ladder height process associated with (X,P0),
i.e. Ht = −Xηt , where η is the right-continuous inverse of the local time at 0 of the process
(X,P0) reflected at its minimum, (X − X,P0). We refer the reader to [1, Chapter VI], for a
definition of ladder height processes. It is easy to verify the following identity, where ν(x) =
inf{t : Ht > x}:

X = x −Hν(x)− Px-a.s. (25)

In other words, X corresponds to the so-called undershoot of the subordinator H at level x.
Since H is a stable subordinator with index αρ, the law of X, and, hence, that of ξ , can be
computed explicitly as shown in the next proposition. In the sequel, P will be a reference
probability measure under which ξ and H have the laws described above.

Proposition 1. Recall that ρ = P0(X1 < 0) and let ξ be the Lévy process whose law is
described in Corollary 1. For any λ > 0,

E[exp(λξ)] = �(λ+ 1 − αρ)

�(λ+ 1)�(1 − αρ)
.

In other words, exp(ξ) is a Beta variable with parameters αρ and 1−αρ, i.e. exp(ξ) has density
function

P(exp(ξ) ∈ dt) = B(αρ, 1 − αρ)−1tαρ−1(1 − t)−αρ1{t∈[0,1]} dt.

Proof. Recall that the Lévy measure, θ(dy), of H and its potential measure, U(dy), are
given by

θ(dy) = c1y
−(αρ+1) 1{y>0} dy and

∫ ∞

0
e−λyU(dy) = c2λ

−αρ,

where c1 and c2 are positive constants. Then, from [1, Chapter III, Proposition 2],

P(Hν(x)− ∈ dy) = 1{y∈[0,x]}
∫ ∞

x

U(dy)θ(dz− y),
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from which we obtain, for all λ ≥ 0 and µ ≥ 0,∫ ∞

0
e−µx E[e−λ(x−Hν(x)−)] dx =

∫ ∞

0
e−(λ+µ)x

∫ x

0
eλy

∫ ∞

x

U(dy)θ(dz− y) dx

=
∫ ∞

0
e−(λ+µ)x

∫ x

0

c1

αρ
eλy(x − y)−αρU(dy) dx

= c1c2(λ+ µ)αρ−1

αρµαρ
�(1 − αρ)

= (λ+ µ)αρ−1

µαρ
.

This means that if ς is exponentially distributed with parameter µ and independent of H , then
ς −Hν(ς)− is gamma distributed with parameters µ and 1 − αρ, i.e.

E[e−λ(ς−Hν(ς)−)] =
(

µ

λ+ µ

)1−αρ
.

Recall that the moment of order λ > 0 of the gamma law with parameters µ and 1 − αρ is
�(λ + 1 − αρ)/(µλ�(1 − αρ)). Let γ be a random variable with this law. Then, from (24)
and (25), we have

E[exp(λξ)] = E[γ λ]
E[ςλ] = �(λ+ 1 − αρ)

�(λ+ 1)�(1 − αρ)
,

which is the moment of order λ of a Beta variable with parameters αρ and 1 − αρ.

In view of the result of Proposition 1, we might be tempted to compute the law of the overall
minimum, inf t≤e(µ) ξ̃t , of the unkilled process ξ̃ before an independent exponential time of
any parameter µ > 0. However, although the PSSMP which is obtained from (ξ̃t , t ≤ e(µ))

through the Lamperti representation is absolutely continuous with respect to (X,Px), its law is
not sufficiently explicit to apply the same arguments as in Proposition 1.

We can, nevertheless, apply the arguments used above to determine the law of the overall
minimum of the Lévy process ξ↑ defined in Subsection 3.2. Indeed, as we observed there, ξ↑
drifts to ∞, as does the PSSMP (X,P↑

x ), and from the Lamperti representation the relation

X = x exp(ξ↑) P
↑
x -a.s.

holds. Moreover, the law of (X,P↑
x ) is explicit and may be found in [7, Theorem 5]: for all

x > 0,

P
↑
x (X ≤ y) = xαρ − (x − y)αρ1{y≤x}

xαρ
.

This allows us to state our final result.

Proposition 2. Let ξ↑ be the Lévy process whose law is described in Corollary 2. The law of
the overall minimum, ξ↑, of ξ↑ is given by

P(−ξ↑ ≤ z) = (1 − e−z)αρ1{z≥0}.

This result is closely related to risk theory and, in particular, provides the explicit form of
the ruin probability at level z ≥ 0, i.e. for this class of Lévy processes,

P(there exists a t ≥ 0 such that z+ ξ
↑
t ≤ 0) = P(ξ↑ ≤ −z) = 1 − (1 − e−z)αρ;

see the recent paper by Lewis and Mordecki [11].
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