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Abstract

A Lévy processes resurrected in the positive half-line is a Markov process obtained
by removing successively all jumps that make it negative. A natural question, given
this construction, is whether the resulting process is absorbed at 0 or not. We first
describe the law of the resurrected process in terms of that of the initial Lévy process.
Then in many important classes of Lévy processes, we give conditions for absorption
and conditions for non absorption bearing on the characteristics of the initial Lévy
process.
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1 Introduction

Let X(1) be a real Lévy process starting from a nonnegative level. If X(1) becomes
negative by a jump, then remove this jump and if it reaches 0 from above, then let the
process be absorbed at 0. Then call X(2) the process thus obtained and apply to X(2) the
same transformation as for X(1). Call X(3) the new process, and so on. The process Z
obtained by repeating this procedure as long as X(n) crosses 0 by a jump is called the
Lévy process X(1) resurrected in the positive half-line. The level 0 is clearly absorbing
for the resurrected process Z and a natural question that will occupy much of this article
is whether or not Z hits 0 in a finite time.

The resurrected process Z is actually a special case of Markov process constructed
by piecing out as first introduced by Ikeda, Nagasawa and Watanabe [10] and studied
in more detail by Meyer [15]. The problem of the finiteness of the lifetime (that is
non conservativeness) of resurrected processes was first pointed out and studied in
[10], Proposition 4.3, see also Sato [17], Theorem 4.5. These results are obtained in
a rather general setting but only allow us to solve the case where the negative half
line is not regular for the Lévy process X(1), see Proposition 4.2 below. Later, Bogdan,
Burdzy and Chen [3] considered a similar question for multidimensional symmetric
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Lévy processes resurrected in the positive half-line

stable processes resurrected in open sets with finite Lebesgue measure. This work was
then extended by Wagner [18] to any symmetric Lévy process, see Theorem 2.6 therein.
The papers [3] and [18] strongly bear on the symmetry of the process and the powerful
tools provided by Dirichlet forms that can be used in this case. Then recently, Kim, Song
and Vondraček [11] tackled the problem of conservativeness for positive self-similar
Markov processes resurrected in the positive half line. They provide a complete solution
of the problem in this case, which includes stable Lévy processes, as a direct application
of the Lamperti transformation, see Section 6 below. Finally, in the recent papers [8]
and [14], resurrection of non-increasing Lévy processes has been studied in the context
of fractional derivatives, this is closely related to our Corollaries 5.4 and 5.3.

The main objective of the present paper is to give conditions for conservativeness
of a real Lévy process resurrected in the positive half line. In the next section, we
give a detailed definition of this process whose law is described in terms of that of the
process killed when it reaches the negative half line. In particular, we specify the explicit
form of the resurrection kernel. Then in Section 3 we prove that, when the initial Lévy
process X(1) creeps downward and satisfy certain additional condition, the resurrected
process is absorbed at 0 with probability one, independently of its starting point. Some
criteria for conservativeness (non absorption) are given in Section 4 and some criteria
for absorption are given in Section 5. This section actually contains the most delicate
case, that is when X(1) enters immediately in the negative half line and drifts to −∞. We
give a sufficient condition for absorption in Theorem 5.2 but up to now, even when X(1)

is the negative of a subordinator, we don’t know whether this condition can be dropped
or not. The stable case already mentioned above is treated in Section 6 and we address
some perspectives in the last section.

We close this introduction by pointing out that even though we provide a rather
large set of criteria to determine whether a resurrected process is conservative or
not, there remain various open questions related to this. Thus, we see this paper as
an invitation for a broader audience to work on the subject. Many other interesting
questions related to these processes remain to be solved, but the one treated here is a
key one. Knowing when the process Z is not conservative naturally invites us to study
its recurrent extensions, i.e. the totality of processes Z̃ for which 0 is a regular and
recurrent state, such that the process obtained by killing Z̃ at its first hitting time of
zero, has the same law as Z. In this direction, some results are known in specific cases,
see e.g. [3] for symmetric stable processes. The question is being studied by the authors
in an ongoing research.

2 The resurrected process

2.1 Basic definition

Let X = (Xt)t≥0 be any real Lévy process starting from 0. The resurrected Lévy
process takes its name from the following recursive pathwise construction. Let x ≥ 0

and let X(n), n ≥ 1, be the sequence of stochastic processes defined by X(1) = X + x

and for n ≥ 2, if τn−1 := inf{t ≥ 0 : X
(n−1)
t ≤ 0} <∞, then

X
(n)
t =

{
X

(n−1)
t , if t < τn−1,

X
(n−1)
t − (X

(n−1)
τn−1 −X

(n−1)
τn−1−), if t ≥ τn−1,

(2.1)

where X0− = 0 and X(n) = X(n−1), if τn−1 = ∞. The process X(n) is obtained by
removing from X(n−1) its first jump through 0. Note that if for some n ≥ 1, X(n) hits
0 continuously, that is Xτn = Xτn−, then X(k) = X(n), for all k ≥ n. Note also that

(τn)n≥1 is a non decreasing sequence of random times and that X(k)
t = X

(n)
t , for all
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Lévy processes resurrected in the positive half-line

k ≥ n, whenever t ≤ τn. This allows us to define for each t ≥ 0 the random variable
Zt := limn→∞X

(n)
t 1I{t<τn}. Then Z = (Zt)t≥0 defines a càdlàg stochastic process which

is nonnegative, absorbed at 0 and satisfies Z0 = x, a.s. The first hitting time of 0 by Z is
obtained as the limit of the sequence (τn, n ≥ 0), that is,

ζ := inf{t : Zt = 0} = lim
n→∞

τn.

We will also use the following more synthetic expression of Z,

Zt =
∑
n≥1

X
(n)
t 1I{τn−1≤t<τn} , t ≥ 0 , (2.2)

where we set τ0 = 0. Then the process Z is called the resurrected Lévy process X
starting from x.

This process is actually a special case of constructing a Markov process by piecing out,
as described in [10] and [15]. More specifically, let Px, x ∈ R be a family of probability
measures under which X is a Lévy process such that Px(X0 = x) = 1 and define,

τ = inf{t ≥ 0 : Xt ≤ 0} <∞.

Then the law of the process Z is obtained by resurrecting under Px, x ≥ 0, the killed
Lévy process

Yt = Xt1I{t<τ} , t ≥ 0 , (2.3)

according to the resurrection kernel,

K(ω, dy) = δXτ−(ω)(dy). (2.4)

(See Subsection 2.3 for more details.) From Theorem 1.1 in [10] and Théorème 1 in [15],
Z is a strong Markov process with state space [0,∞), in a filtration where (τn, n ≥ 1)

are stopping times. Note that Y = (Yt)t≥0 is also a strong Markov process with state
space [0,∞) and 0 as an absorbing state. We will keep the notation (Px)x∈[0,∞) for the
family of probability measures associated to the process Y , and (Px)x∈[0,∞) will denote
the family of probability measures associated to Z. From our construction, when ζ is
finite, Z reaches 0 continuously, that is, for all x ≥ 0,

Zζ− = 0 , Px-a.s. on the set {ζ <∞}.

So, either Z reaches 0 continuously at a finite time or it never reaches 0. In all the cases
treated here, these events have probability 0 or 1, independently of x. The major part of
this paper is devoted to determine conditions on the characteristics of the Lévy process
X for ζ to be finite.

2.2 The distribution of the resurrected process

Let us now describe the distribution of the process Z in more detail. Note that
τ1 = τ , Px-a.s., for all x ≥ 0. Then it follows from (2.2) and (2.3) that for all nonnegative
measurable function f such that f(0) = 0, f(Zt) = f(Yt) +

∑
n≥2 f(X

(n)
t )1I{τn−1≤t<τn},

Px-a.s., for all t ≥ 0, so that Y is a subprocess of Z in the sense of part III.3 in [4],
that is Ex(f(Yt)) ≤ Ex(f(Zt)), for all t ≥ 0 and x ≥ 0. This implies the existence of a
multiplicative functional M = (Mt)t≥0 of Z such that for all t, x and f as above,

Ex(f(Yt)) = Ex(f(Zt)Mt) , (2.5)
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Lévy processes resurrected in the positive half-line

see Theorem 2.3, p.101 in [4]. It also suggests that the distribution of Zt can be expressed
from the process Y , at least in a non formal way, as follows

Ex(f(Zt)) = Ex(f(Yt)M
−1
t (Y )) . (2.6)

The aim of Theorem 2.11 below is to make the functional M−1
t (Y ) explicit and to give a

direct proof of identity (2.6).

For that end, we next quote a result describing the joint distribution of (τ,Xτ−) under
Px, for x > 0. This is more general than needed right now, but it will be handy all over
our work. We denote by π the Lévy measure of X and we set π̄−(x) = π((−∞, x]), x ∈ R.
We will also denote by

Ex
(
1I{Xs∈dy,s<τ}

)
ds = U0(x; ds, dy), s, x, y ≥ 0, (2.7)

the potential measure, in time and space, of X killed at its first passage time below 0

(that is the process Y ). By U and U∗, we denote the renewal measure of the bivariate
ascending, respectively descending, ladder time and height process associated to X, see
Chap. VI in [1]. The Wiener-Hopf factorization in time and space ensures that for any
non negative and measurable function h,∫∫

[0,∞)×(0,∞)

U0(x; ds, dy)h(s, y)

=

∫
[0,∞)×[0,x)

U∗(ds, d`)

∫
(0,∞)×[0,∞)

U(du, dv)h(s+ u, x− `+ v)1I{x−`+v>0},

where U∗(ds, dy) = δ(0,0)(ds, dy) (resp. U(ds, dy) = δ(0,0)(ds, dy)) if X (resp. −X) is a
subordinator.

Lemma 2.1. The joint distribution of (τ,Xτ−) is characterized by the following identity,
which holds for any Borel function h : R+ ×R+ 7→ R+,∫∫

[0,∞)×[0,∞)

Px (τ ∈ dt,Xτ− ∈ dy, τ <∞)h(t, y)

=

∫
[0,∞)

a∗u∗(ds, x)h(s, 0)

+

∫∫
[0,∞)×(0,∞)

U0(x; ds, dy)h(s, y)π−(−y),

(2.8)

where a∗ is the drift coefficient of the descending ladder height process of X and u∗(ds, x)

denotes the density in the spatial coordinate of U∗(ds, d`), which exists when a∗ > 0.
For all t > 0, x > 0 and for all positive and measurable function f : R+ ×R+ 7→ R+,

Ex(f(Xτ−, τ)1I{τ≤t,Xτ<Xτ−}) =

∫ t

0

Ex(f(Xs, s)π̄
−(−Xs)1I{s≤τ}) ds , (2.9)

and

Px(τ ≤ t, Xτ− = 0) =

∫
(0,t]

a∗u∗(ds, x). (2.10)

Moreover, if X drifts to∞, then

Px(τ =∞) = κ∗U([0,∞)× [0, x]), x > 0;

if X drifts to −∞, then

Ex(τ) = κ−1U∗([0,∞)× [0, x]), x > 0;
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while, if X oscillates, then

Px(τ =∞) = 0 and Ex(τ) =∞, for all x > 0.

Here κ and κ∗ are the killing rates of the upward and downward ladder height processes,
respectively.

Proof. The proof of identity (2.8) can be found in Theorem 3.1 of [9], for the creeping
part and in Lemma 11 of [7], for the jump part. The proof of (2.9) follows that of Lemma
11 of [7] up to a slight extension from the case f ≡ 1 to the general case. The rest of the
identities comes from Proposition 17 in Chapter VI of [1].

Theorem 2.2. For all x ≥ 0, t ≥ 0 and for all positive measurable function f ,

Ex(f(Zt)1I{t<ζ}) = Ex

(
f(Xt) exp

(∫ t

0

π̄−(−Xs) ds

)
1I{t<τ}

)
. (2.11)

Proof. First note that identity (2.11) is trivial for x = 0. Moreover, since (τn, n ≥ 1) is a
non decreasing sequence which satisfies ζ = limn→∞ τn, it suffices to show that for all
x > 0, t ≥ 0 and n ≥ 1,

(n− 1)!Ex
(
f(Zt)1I{τn−1≤t<τn}

)
= Ex

(
f(Xt)

(∫ t

0

π̄−(−Xs) ds

)n−1

1I{t<τ}

)
. (2.12)

For n = 1, the equality is trivial for all x > 0 and t ≥ 0 (recall that τ0 = 0 and τ1 = τ , Px-
a.s.). Then let us prove (2.12) by induction. Recall that (τn, n ≥ 1) are stopping times in a
filtration making Z a strong Markov process. Moreover, they satisfy τn = τ1 + τn−1 ◦ θτ1 .

Then let us fix x > 0 and n ≥ 2. Assume that (2.12) holds for n− 1 and for all t > 0,
and apply the strong Markov property at time τ1 in order to obtain,

Ex
(
f(Zt)1I{τn−1≤t<τn}

)
= Ex

(
f(Zt)1I{τn−1≤t<τn, Z(τn−1)>0}

)
= Ex

(
1I{τ1≤t, Z(τ1)>0}

(
1I{τn−2≤t−τ1<τn−1, Z(τn−2)>0}f(Zt−τ1)

)
◦ θτ1

)
= Ex

(
1I{τ̃1≤t, Z̃(τ̃1)>0}EZ̃(τ̃1)

(
1I{τn−2≤t−s<τn−1, Z(τn−2)>0}f(Zt−s)

)
|s=τ̃1

)
,

where in the last equality (τ̃1, Z̃(τ̃1)) is integrated under Px and has the same law as
(τ1, Z(τ1)). Then by applying successively (2.9) in the second equality below and our
induction hypothesis in the third one, we obtain,

Ex

(
1I{τ̃1≤t, Z̃(τ̃1)>0}EZ̃(τ̃1)

(
1I{τn−2≤t−s<τn−1, Z(τn−2)>0}f(Zt−s)

)
|s=τ̃1

)
= Ex

(
1I{τ̃≤t, X̃(τ̃−)>0}EX̃(τ̃−)

(
1I{τn−2≤t−s<τn−1, Z(τn−2)>0}f(Zt−s)

)
|s=τ̃

)
=

∫ t

0

Ex
(
π̄−(−Xs)1I{s≤τ}EXs

(
1I{τn−2≤t−s<τn−1, Z(τn−2)>0}f(Zt−s)

))
ds

=
1

(n− 2)!

∫ t

0

Ex
(
π̄−(−Xs)1I{s≤τ}

× EXs

(
f(Xt−s)

(∫ t−s

0

π̄−(−Xu) du

)n−2

1I{t−s<τ}

))
ds

=
1

(n− 2)!
Ex

(∫ t

0

π̄−(−Xs)

(∫ t

s

π̄−(−Xu) du

)n−2

ds f(Xt)1I{t<τ}

)

=
1

(n− 1)!
Ex

((∫ t

0

π̄−(−Xs) du

)n−1

f(Xt)1I{t<τ}

)
,
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where in the first equality, (τ̃ , X̃(τ̃−)) is integrated under Px and has the same law as
(τ,X(τ−)). This shows (2.12) and ends the proof of (2.11).

Theorem 2.2, up to a few additional justifications, shows that the multiplicative functional
of Z involved in (2.5) has the following expression,

Ex(f(Yt)) = Ex

(
f(Zt) exp

(
−
∫ t

0

π̄−(−Zs) ds
)

1I{t<ζ}

)
.

However, the interest of our work lies mainly in the identity (2.11) which describes the
law of Z in terms of that of X.

2.3 The resurrection kernel

Let us define the kernel,

Kλ(x, dy) = Ex

(
e−λτ11I{Zτ1∈dy, τ1<∞}

)
, x, y, λ ≥ 0 , (2.13)

and the function f (λ)
ζ (x) = Ex

(
e−λζ

)
, for x ≥ 0 and λ ≥ 0. Then we first note that f (λ)

ζ is

invariant for Kλ. We will set K := K0 and fζ := f
(0)
ζ .

Proposition 2.3. For all x ≥ 0 and λ ≥ 0,

Kλf (λ)
ζ (x) = f

(λ)
ζ (x) . (2.14)

In particular, the function fζ(x) = Px(ζ <∞), x ≥ 0, satisfies,

Kfζ(x) = fζ(x) . (2.15)

Proof. From the strong Markov property applied for Z at time τ1 and the identity
ζ = τ1 + ζ ◦ θτ1 , we obtain

f
(λ)
ζ (x) = Ex(1I{τ1<∞}e

−λτ1EZτ1 (e−λζ))

=

∫
y∈[0,∞)

Kλ(x, dy)f
(λ)
ζ (y) ,

which proves (2.14). Then (2.15) is obtained by taking λ = 0.

From (2.8) in Lemma 2.1, the kernel Kλ can be made explicit as follows,

Kλ(x, dy) = Ex
(
e−λτ1I{Xτ−∈dy, τ<∞}

)
= U0

λ(x, dy)π−(−y)1I{y>0} + a∗u∗λ(x)δ0(dy), (2.16)

where U0
λ(x, dy) =

∫∞
0
e−λsPx(Xs ∈ dy, s < τ) ds is the λ-potential measure of the killed

process Y defined in the previous subsection, u∗λ(x) is the density of the λ-potential of
the downward ladder height process of X and a∗ is its drift coefficient.

Following our objective, we wish to obtain more information on the function fζ(x) =

Px(ζ <∞). Note that when the process X drifts toward∞, Px(τ <∞) = Px(τ1 <∞) < 1

and since ζ ≥ τ1, Px-a.s., we have fζ(x) < 1. On the other hand, when the process X
does not drift toward∞, we have Px(τ <∞) = Px(τ1 <∞) = 1 so that the kernel

K(x, dy) = U0(x, dy)π−(−y)1I{y>0} + a∗u∗(x)δ0(dy)

is Markovian. It completes the description of the resurrection kernel given in (2.4). It is
actually the transition kernel of the Markov chain (Zτn)n≥0, that is for all bounded Borel
function f ,

K(n)f(x) = Ex(f(Zτn)),
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Lévy processes resurrected in the positive half-line

where K(n) denotes the n-th composition of K with itself. Equation (2.15) tells us that
the function fζ is a bounded invariant function for K. In our forthcoming analysis of
cases, we will encounter that a zero-one law arises, either fζ ≡ 1 or fζ ≡ 0. From there,
we conjecture that

• If X does not drift towards∞, then either fζ(x) = 1, for all x ∈ (0,∞), or fζ(x) = 0,
for all x ∈ (0,∞).

A possible approach to prove this conjecture would require studying the totality of
invariant functions for the Markovian kernel K. In particular, if one is able to prove
that the totality of bounded invariant functions for K are the constant functions, then
necessarily fζ would be a constant function, and hence equal to 0 or 1. We invite the
interested reader to prove or disprove this conjecture.

3 The creeping case

Let us start with the case where the Lévy process X creeps downward. Recall that
by definition, this means that for all x > 0,

Px(Xτ− = 0, τ <∞) = a∗u∗(x) > 0

and that X creeps downward if and only if the drift a∗ is positive. Moreover, in this case,
u∗ is continuous on [0,∞) and satisfies limx→0+ a

∗u∗(x) = 1.

Theorem 3.1. Assume that X creeps downward and that it does not drift toward∞. If
either −X is a subordinator or if the downward ladder height process of X has finite
mean, then fζ(x) = Px(ζ <∞) = 1, for all x ≥ 0.

Proof. First observe that since X does not drift toward∞, Px(τn <∞) = 1, for all n ≥ 1.
In particular Px(τ <∞) = 1 and Px(Xτ− = 0) = Px(Zτ1 = 0) = a∗u∗(x). Then from the
Markov property and the identity τn = τ1 + τn−1 ◦ θτ1 ,

Px(Zτn > 0) = Ex(1I{Zτn−1
>0}PZτn−1

(Zτ1 > 0))

= Ex(1I{Zτn−1
>0}[1− a∗u∗(Zτn−1)]). (3.1)

If −X is a subordinator, then Zτn ≤ x, Px-a.s., for all n, so that

1− a∗u∗(Zτn−1
) ≤ 1− inf

y∈[0,x]
a∗u∗(y) := k < 1, Px − a.s.,

and hence, from equality (3.1), Px(Zτn > 0) ≤ kPx(Zτn−1
> 0), which implies Px(Zτn >

0) < kn. Then we derive from Borel-Cantelli lemma that Px-a.s., Zτn > 0 holds only a
finite number of times and therefore Z is absorbed at a finite time.

Let us now consider the case where X does not drift toward∞ and creeps downward,
and assume that the downward ladder height process of X has finite mean. Then recall
from [2] that limy→∞ u∗(y) = a∗/m > 0, where m is the mean of the downward ladder
height process. This yields,

1− a∗u∗(Zτn−1) ≤ 1− inf
y≥0

a∗u∗(y) < 1, Px − a.s.,

and the same argument as above leads to the same conclusion.

In view of Theorem 5.1 below, it seems that integrability of the downward ladder height
process when −X is not a subordinator is not a necessary condition in Theorem 3.1.
However, although it is a little counterintuitive at first glance, it is possible that ‘big’
negative jumps of X at its infimum play an important role for the conservativeness
property of the resurrected process.
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4 Some criteria for non absorption

Let us denote by τ−z , the first passage time below z by X, that is

τ−z = inf{t ≥ 0 : Xt ≤ z}, z ∈ R.

By our construction in Subsection 2.1 and from the strong Markov property, conditionally
on the n − 1 first positions where the process is resurrected, say (Z(τ0) = x0, Z(τ1) =

x1, . . . , Z(τn−1) = xn−1), the n-th resurrection time under Px0 has the same distribution
as

τn =

n−1∑
i=0

τ−,i−xi , n ≥ 1, (4.1)

where (τ−,0−x0
, τ−,1−x1

, . . . , τ−,n−xn , . . .) are independent random variables, and the law of τ−,i−z
is the same as that of τ−−z under P. We deduce therefrom that, conditionally on the
resurrection positions (Z(τ0) = x0, Z(τ1) = x1, . . . , Z(τn) = xn, . . .), the resurrected
process Z will be absorbed at 0 in a finite time if and only if

∑
n≥0 τ

−,n
−xn < ∞. This

argument yields the following identity in law,

ζ
(Law)
=
∑
n≥0

τ−,n−Z(τn), (4.2)

where the family of processes {(τ−,i−xi), xi ≥ 0, i ≥ 0} is independent of the sequence
(Z(τi))i≥0. This identity will be fundamental in what follows. Another interesting identity
is given in the following Lemma. This Lemma, together with the identities (4.1) and (4.2)
will be useful to establish Proposition 4.2.

Lemma 4.1. Assume that the Lévy process X does not creep downward and does not
drift to∞. Then the random variable∫ τ

0

π−(−Xt)dt

is exponentially distributed with parameter 1.

Before we state our next result, we would like to point out that a version of Lemma 4.1
for a class of rather general Markov processes can be found in [17], see Proposition 2.7
therein. Note also that a direct proof of Lemma 4.1 can be obtained, arguing as in the
proof of Theorem 2.11, to identify the moments of the variable in question using the
Kac’s moment formula. For sake of brevity, we avoid the details.

Proposition 4.2. The resurrected process has an infinite lifetime, that is Px(ζ =∞) = 1,
for all x > 0 in either of the following cases:

(a) X does not creep downward and 0 < π(−∞, 0) <∞.

(b) 0 is not regular for (−∞, 0).

Proof. Let us first make hypothesis (a). We assume first that X does not drift towards
∞. Then from the former lemma we have that for x > 0, under Px the random variable∫ τ

0
π−(−Xt)dt follows an exponential distribution with parameter 1. Moreover it satisfies

the inequality
∫ τ

0
π−(−Xt)dt ≤ π−(0)τ . Recall also that, in the notation of the beginning

of this section, under Px, τ has the same law as τ−−x under P. Then from the above
observations and the representation (4.1) of τn, we obtain the stochastic domination

τn
Law
≥ 1

π−(0)

n−1∑
i=0

ei, (4.3)
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where ei, i ≥ 0 are i.i.d. standard exponential r.v.’s. It follows that τn → ∞, a.s. when
n→∞. Assume now that X drifts towards∞. In this case, we have that Px(ζ =∞) ≥
Px(τ =∞) > 0, x > 0. To prove that the former probability equals one, independently of
the starting point, we will prove that the event {ζ <∞} has zero probability. Since the
process does not creep downward, the only way in which the resurrected process gets
absorbed at 0, viz. ζ <∞, is by infinite resurrections whose sum of lengths is finite. But
this is impossible because, in this case, each resurrection time is stochastically bounded
by below by an exponential random variable of parameter π−(0). Indeed, to have a
resurrection, at least there should be a negative jump, which happens at an exponential
time with parameter π−(0). This concludes the proof for case (a).

Let us now make hypothesis (b). If 0 is not regular for the half-line (−∞, 0), the
downward ladder height process Ĥ has a finite Lévy measure and zero drift, so the
process X can not creep downwards. We assume for a moment that X does not drift
towards ∞, and hence Ĥ has also an infinite lifetime. The case (a), proved above,
ensures that the process obtained by resurrection of −Ĥ is never absorbed at zero.
Since in the local time scale this process bounds by below the process Z, we infer that
the latter is never absorbed at 0.

Then we deal with the case where X drifts towards ∞. As in the proof of case (a),
we see that the event {ζ <∞}, has zero probability. Indeed, in the local time scale, the
downward ladder height process is never absorbed at zero, which bounds the resurrected
process from below, and then an infinite excursion from the infimum, inside the latest
resurrection, arises, and from there onwards there is no need to resurrect the process
again as it never goes below the reached infimum.

5 When X drifts towards −∞
Let us recall the notations introduced before Lemma 2.1 in Section 2 and denote the

renewal functions of the downward and upward ladder height processes respectively by

U∗([0,∞)× [0, x]) := U∗(x) , U([0,∞)× [0, x]) := U(x), x > 0.

Recall that κ ∈ [0,∞) is the killing rate of the upward ladder process, that is U([0,∞)×
[0,∞)) = κ−1. Moreover, from Lemma 2.1, when X drifts towards −∞, κ > 0 and

Ex (τ) = κ−1U∗(x), x ≥ 0. (5.1)

In this section we give sufficient conditions for the lifetime of the resurrected process to
be finite.

Theorem 5.1. Assume that,
(i) 0 is regular for (−∞, 0),
(ii) X drifts towards −∞,
(iii) the following condition is satisfied,

sup
y>0

U∗(y)π−(−y) < κ. (5.2)

Then Ex(ζ) <∞, and in particular Px(ζ <∞) = 1, for all x ≥ 0.

Remark 5.2. It is worth pointing out that the constant κ depends on the chosen normal-
ization of the local time at the supremum, which is actually related to that chosen at the
infimum, thus, changing it, would lead to a change the representation of U∗. It could
hence be taken as 1.

Proof. We derive from (4.2) that

Ex(ζ) =
∑
n≥0

Ex

(
τ−,n−Z(τn)

)
, (5.3)
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where we recall that, under Px, the family of processes {(τ−,n−xn), xn ≥ 0, n ≥ 0} is

independent of the sequence (Z(τn))n≥0. Moreover, under Px, the variables τ−,n−xn , xn ≥ 0,

n ≥ 0 are independent and τ−,n−xn has the same law as inf{t ≥ 0 : Xt ≤ −xn} under P.
Note that from assumption (ii) of the statement, τn <∞, Px-a.s. for all x ≥ 0. Then from
(5.1), the relation τn = τn−1 + τ1 ◦ θτn−1

and the strong Markov property applied at time
τn−1, we obtain that for all n ≥ 1,

Ex

(
τ−,n−Z(τn)

)
= κ−1Ex (U∗(Z(τn)))

= κ−1Ex
(
EZ(τn−1) (U∗(Z(τ1))

)
.

Since X drifts towards −∞, we kave κ > 0. Then it follows from (2.8) in Lemma 2.1 that

κ−1Ex
(
EZ(τn−1) (U∗(Z(τ1))

)
= κ−1Ex

(
EZ(τn−1) (U∗(X(τ−))

)
= κ−1Ex

(∫ Z(τn−1)

0

U∗(dy)

∫ ∞
0

U(dz)U∗(Z(τn−1)− y + z)π−(y − Z(τn−1)− z)

)
+a∗U∗(0)Ex(u∗(Z(τn−1))

≤ κU([0,∞)× [0,∞)) sup
y>0

U∗(y)π−(−y)Ex (U∗(Z(τn−1))) + a∗U∗(0)Ex(u∗(Z(τn−1))

= κ−2 sup
y>0

U∗(y)π−(−y)Ex (U∗(Z(τn−1))) = κ−1 sup
y>0

U∗(y)π−(−y)Ex

(
τ−,n−1
−Z(τn−1)

)
.

Note that U∗(0) = 0 since 0 is regular for (−∞, 0). It follows from the above inequalities

that for all n ≥ 1, Ex
(
τ−,n−Z(τn)

)
≤ cEx

(
τ−,n−1
−Z(τn−1)

)
, where c := κ−1 supy>0 U

∗(y)π−(−y)

and hence Ex
(
τ−,n−Z(τn)

)
≤ cnEx (τ). Together with (5.2) and (5.3), this implies that for

any x > 0, Ex (ζ) ≤ 1
1−c

1
kU
∗(x) = 1

1−cEx (τ) <∞.

We emphasize that downwards creeping Lévy processes always satisfy condition (i) of
Theorem 5.1 and when they also satisfy conditions of Theorem 3.1, then conditions (ii)

and (iii) of Theorem 5.1 are not needed for the associated resurrected process to be
absorbed at 0 in a finite time.

For the remainder of this section, we will focus on the special case where X is a non
increasing Lévy process, that is the negative of a subordinator. Condition (5.2) can be
very useful in this particular case. Indeed, when X is decreasing, U∗ is the renewal
function of the process X itself. In this case, U∗ will be written as, U∗(x) =

∫∞
0
P(0 ≤

−Xt ≤ x) dt. Moreover, recall that the renewal measure U(dt, dx) has the simple form
U(dt, dx) = δ(0,0)(dt, dx), so that κ = 1. Then conditions of Theorem 5.1 are satisfied
whenever X has no negative drift, π(−ε, 0) = ∞, for all ε > 0 and (5.2) holds and we
obtain the following corollary.

Corollary 5.3. Assume that X is the negative of a subordinator with no (negative) drift
and such that π(−ε, 0) =∞, for all ε > 0. If

sup
y>0

U∗(y)π−(−y) < 1, (5.4)

then Px(ζ <∞) = 1, for all x ≥ 0.

This result leads to the following corollary that covers many commonly found examples
of subordinators.

Corollary 5.4. Assume that X is the negative of a subordinator whose tail Lévy measure
satisfies that there are 0 < α, β < 1, such that π− is regularly varying at 0 with index α
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and at infinity with index β, viz. for all c > 0,

lim
x→0+

π−(−xc)
π−(−x)

= c−α, lim
x→∞

π−(−xc)
π−(−x)

= c−β .

In this case, we have that Px(ζ <∞) = 1, for all x ≥ 0.

Proof. From the estimates in page 75 in [1] and the reflection formula for the Gamma
function, we know that under the assumptions of the Corollary we have

lim
y→0

U∗(y)π−(−y) =
sinπα

πα
, lim

y→0
U∗(y)π−(−y) =

sinπβ

πβ
.

The latter are both valued in (0, 1). It follows from Theorem 3 in [6] that for all x > 0,
P(Xτ−−x−

−Xτ−−x
> x) = U∗(x)π−(−x). The assumptions imply that π−(−x) > 0, for all

x > 0, and hence the latter probability is necessarily in (0, 1). We can conclude from here
that the condition (5.2) is satisfied.

Let us quote two recent works related to the two above corollaries. First of all, the
case of stable subordinators was treated in [8], see also [11] and the following section.
Furthermore, in the very recent work [14], the author treats in Chapter 4 the more
general case of subordinators whose density is completely monotone, which, added to a
few other hypotheses, is however more restrictive than condition (5.4).

Remark 5.5. The previous corollaries suggest a method to build examples of Lévy
process for which

sup
x>0

U∗(x)π−(−x) = 1. (5.5)

For instance, this is the case when −X is a Gamma subordinator, that is

E(exp(λX1)) = (1 + λ/b)−a = exp

(
−
∫ ∞

0

(1− e−λx)ax−1e−bx dx

)
, a, b, λ > 0,

see [1] p.75. In this interesting setting, Theorem 5.1 is not conclusive and other
techniques seem to be necessary.

6 The stable case

The case where X is a stable Lévy process is very particular as our problem can be
tackled and entirely solved by using the Lamperti transformation. The method we will
develop in this section was the starting point of our research a long time ago. The same
method has recently been used in [11] to show this result in the more general framework
of positive self-similar Markov processes. This motivated us to get back to our work and
produce the present note.

We consider X a stable Lévy process with index α ∈ (0, 2] and recall from (2.3)
the definition of the killed process Y . In this setting, both Markov processes Y and Z
clearly inherit from X the scaling property of index 1/α. As positive self-similar Markov
processes, Y and Z can each be represented as the exponential of some possibly killed
Lévy process, time changed by the inverse of its exponential functional, see [13]. Let
ξY (resp. ξZ) be the underlying Lévy process in the Lamperti representation of Y ,
(resp. Z). Then our construction of Z from Y and the Lamperti representation of both
processes show that ξY is obtained from (the non killed Lévy process) ξZ by killing it at
an independent exponential time of some parameter, say β ≥ 0. Note that β = 0 if and
only if X has no negative jumps. In this case, Z = Y and the latter process clearly hits 0
in a finite time almost surely. Therefore, we can assume that β > 0.
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Using these arguments and standard facts from the theory of self-similar Markov
processes, we obtain that Z hits 0 in a finite time if and only if ξZ drifts towards −∞.
On the other hand, we know from [5] and [12] that the process ξY is a process of the
hypergeometric type, with characteristic exponent,

E
(
eiλξ

Y
1 , 1 < e

)
= exp{−Ψ(λ)} so that E

(
eiλξ

Z
1

)
= exp{−(Ψ(λ)−Ψ(0))},

where Ψ(λ) =
Γ (α− iλ)

Γ (αρ− iλ)

Γ (1 + iλ)

Γ (1− αρ+ iλ)
, with ρ = P(X1 < 0) and where e denotes the

lifetime of ξY . It is then easily verified that there is a constant Cα > 0 such that,

E
(
ξZ1
)

= E
(
ξY1 | 1 < e

)
= Cα ((ψ(1− αρ)− ψ(1))− (ψ(αρ)− ψ(α))) , (6.1)

where ψ(β) denotes the digamma function ψ(β) = Γ′(β)
Γ(β) . We are now able to solve the

problem of the finiteness of the lifetime of Z in the stable case.

Theorem 6.1. Assume that X is a stable Lévy process with index α ∈ (0, 2].
Then Px(ζ <∞) = 1, for all x ≥ 0 if and only if α and ρ satisfy,

cot(παρ) <

∫ ∞
0

dt

1− e−t
(
e−αt − e−t

)
. (6.2)

Proof. As argued before the statement of the theorem, Px(ζ < ∞) = 1, for all x ≥ 0 if
and only if ξZ drifts towards −∞, which is equivalent to E

(
ξZ1
)
< 0. From (6.1) we are

then left to find the values α and ρ such that ψ(1− αρ)− ψ(1)− ψ(αρ) + ψ(α) < 0.
Then note that by the reflection formula for the digamma function,

ψ(1− αρ)− ψ(αρ) = cot(παρ).

On the other hand, the following identity for the digamma function is well known

ψ(δ)− ψ(γ) =

∫ ∞
0

dt

1− e−t
(
e−γt − e−δt

)
, δ, γ ≥ 0,

and this allows us to conclude.

Since cot(παρ) ≥ 0 if αρ ∈ [0, 1/2] and cot(παρ) < 0 if αρ ∈ (1/2, 1], it follows from (6.2),
that if α < 1 and αρ > 1/2 then Px(ζ < ∞) = 1, for all x ≥ 0, whereas if αρ ≤ 1/2 and
α ≥ 1 then Px(ζ <∞) = 0, for all x > 0. Note also that when −X is a stable subordinator,
Corollary 5.4 cannot be recovered from (6.2) without any further development. However,
it can be derived directly from Lamperti’s transformation. Indeed, in this case, Z is a
decreasing self-similar Markov process whose only alternative is to hit 0 through an
accumulation of jumps in a finite time.

7 Open question and perspectives

The aim of the present paper was to obtain necessary and sufficient conditions on a
Lévy process for its resurrected version to satisfy the following property:

(P ) Px(ζ <∞) = 1 for all x ∈ [0,∞).

The various open questions raised throughout this note actually boil down to the fact that
some class of Lévy processes resists our investigations. When the initial Lévy process X
either drifts toward infinity or when 0 is not regular for (−∞, 0), the property (P ) fails,
as shown in the comment at the end of Subsection 2.3 and in Proposition 4.2. On the
other hand, the stable case in Theorem 6.1 shows that it is not enough that X does not
drift towards infinity and that 0 is regular for (−∞, 0) for the property (P ) to be satisfied.
In summary, the Lévy processes X for which work remains to be done are those that
verify the following properties:
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• X does not drift to∞,

• 0 is regular for (−∞, 0),

• X falls outside the cases covered by Theorems 3.1, 5.1 and 6.1.

Let us finally emphasize that some of our results can be extended to general Rd-
valued Markov processes. We consider the resurrection of such a process when leaving
an open subset D ⊂ Rd. The rate function x 7→ π̄−(−x) involved in the killing of
the process is then given by x 7→ N(x,1IDc), where N(x, dy) is the kernel of the Lévy
system of the process and Theorem 2.2 remains valid where the multiplicative functional

exp
(∫ t

0
N(Xs,1IDc) ds

)
now defines the resurrected process. We can also claim, as an

extension of Theorem 5.1, that provided the condition supx∈D Ex(τDc)N(x,1IDc) < 1 is
satisfied, where τDc is the first exist time from D, the lifetime of the resurrected process
has finite mean. These few extensions allow us to believe that other more refined results
can be obtained in fairly general frameworks thus offering some perspectives in this
direction.
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on the references [8] and [14] and to Pat Fitzsimmons for helpful discussions on the
subject of this paper. Last, but not least, we would like to thank the anonymous referee
for her/his insightful report.

ECP 29 (2024), paper 71.
Page 14/14

https://www.imstat.org/ecp

https://doi.org/10.1214/24-ECP638
https://imstat.org/journals-and-publications/electronic-communications-in-probability/

	Introduction
	The resurrected process
	Basic definition
	The distribution of the resurrected process
	The resurrection kernel

	The creeping case
	Some criteria for non absorption
	When X drifts towards -
	The stable case
	Open question and perspectives
	References

