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Abstract. Any solution of the functional equation

Wt � Bt � a sup
s�t

Ws � 1

2
LW

t ; t � 0 ;

where B is a Brownian motion, behaves like a re¯ected Brownian
motion, except when it attains a new maximum: we call it an a-per-
turbed re¯ected Brownian motion. Similarly any solution of

Xt � Bt � a sup
s�t

Xs � b inf
s�t

Xs; t � 0

behaves like a Brownian motion except when it attains a new maxi-
mum or minimum: we call it an a; b-doubly perturbed Brownian
motion. We complete some recent investigations by showing that for
all permissible values of the parameters a, a and b respectively, these
equations have pathwise unique solutions, and these are adapted to
the ®ltration of B:

Mathematics Subject Classi®cation (1991): 60J30, 60J20

1 Introduction

Let B be a BM(0) (i.e. a Brownian motion starting from 0) and
a;b 2 �ÿ1; 1�. For any process Y write MY

t � sups�tfYsg; IY
t � infs�t
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fYsg; and if Y is a semimartingale write LY
t for the semimartingale local

time of Y at 0 at time t: The aim of this paper is to study the solutions
of the functional equations

Wt � Bt � aMW
t � 1

2 LW
t ; t � 0 ; �1:1�

and

Xt � Bt � aMX
t � bIX

t ; t � 0 : �1:2�

The ®rst of these arose in a study of the windings of planar Brownian
motion in [7], and the second, which was also introduced by Le Gall
and Yor in [8], has been studied in [1], [2], [3], [6], [9], [10], and [12]. We
will call a solution of (1.1) an a-perturbed re¯ected Brownian motion,
and a solution of (1.2) an a; b-doubly perturbed Brownian motion. In
the case a � 0 there is a pathwise unique solution of (1.1), which is of
course a RBM(0) (i.e. a re¯ected Brownian motion starting at 0). If
b � 0 then it is easy to see that (1.2) has a pathwise unique solution
given by

Xt � Bt � a�MB
t ;

where

a� � a=1ÿ a :

This will be referred to as an a-singly perturbed Brownian motion. In
all other cases these equations have no explicit solution, and consid-
erable e�orts have been made to settle the questions of existence and
uniqueness of solutions. Thus in both [7] and [2] Lipshitz arguments
were used to demonstrate the existence of unique solutions to (1.1)
and (1.2) in the cases a < 1=2 and qj j < 1 respectively, where

q � q�a; b� � a�b� � ab
�1ÿ a� 1ÿ b� � :

In these cases the solutions are also adapted to the ®ltration of B,
which is a natural requirement. More recently the result for (1.2) has
been extended to the case qj j � 1 by Davis [4], and to the case q > 1
by Perman and Werner [10]. Furthermore, in [4] Davis also studied a
deterministic version of (1.2) and showed that when B is replaced by a
continuous function b there always exists at least one solution, but for
suitably chosen b there can be more than one when qj j > 1. However
in this latter case his results do not really settle the existence question
for (1.2), since there is no guarantee that the resulting solution is
measurable, let alone adapted to the ®ltration of B:

520 L. Chaumont, R. A. Doney



The starting point for this paper is the observation that solutions of
these two perturbed equations, assuming they exist, are related to each
other in a manner which extends a well-known connection between a
BM(0� and a RBM(0). Speci®cally, the time-changed version of the
positive (negative) part of an a; b-doubly perturbed Brownian motion
is an a-perturbed (respectively, b-perturbed) re¯ected Brownian mo-
tion, and these processes are independent. This connection has been
used in [3] to perform some calculations for doubly perturbed
Brownian motion, and here also it plays a key roÃ le.

Our results are easily stated, and give a complete solution to the
existence and uniqueness questions for these two equations. (It is
easily seen that there are no solutions of (1.1) when a � 1 and it has
been shown in [8] that there are no adapted solutions of (1.2) if either
a � 1 or b � 1:)

Theorem 1 Given any a < 1 and any BM(0) B there exists a.s. a path-
wise unique solution to (1.1). Moreover this solution is adapted to the
®ltration of B:

Theorem 2 Given any a < 1; b < 1 and any BM(0) B there exists a.s. a
pathwise unique solution to (1.2). Moreover this solution is adapted to
the ®ltration of B:

The key ideas in the proofs of these results are similar, but are
simpler in the case of Theorem 1. As was pointed out in [7], for any
e > 0 the equation

Wt � e� Bt � aMW
t � 1

2 LW
t ; t � 0 ; �1:3�

has a pathwise unique solution, which is adapted to the ®ltration of B:
The crucial point is that if W �1� and W �2� are the solutions of (1.3) with
e � e�1� and e � e�2� where e�2� � e�1� � d with d > 0; and the same B;
then for any ®xed t one can bound sups�t W �1�

s ÿ W �2�
s

�� �� in terms of a; d;
and the number of visits that W �1� makes by time t to its maximum
which are separated by a visit to zero. (See Lemma 3.) Furthermore
one can prove that as e�1� ! 0 this number is, almost surely, asymp-
totic to a constant multiple of log e�1�

�� ��. (See Lemma 1.) Putting these
facts together enables us to produce a sequence of solutions to (1.3),
with e random, which are Cauchy for uniform convergence on com-
pacts. This establishes the existence of an adapted solution of (1.1),
and a modi®cation of this argument also yields the uniqueness.

The above argument is valid, with some minor changes, for all
values of a < 1; but because of the previously quoted results, we only
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give it for a 2 �1=2; 1�. Similarly we only give our proof of Theorem 2
when q�a;b� < ÿ1, when one of the perturbations is self-attractive
and the other is self-repelling, because in the other cases the result is
already known. Finally we mention that results which are in essence
the same as ours have been established, by Burgess Davis, using quite
di�erent methods, and can be found in the accompanying paper [5].

2 Perturbed re¯ected Brownian motion

As previously mentioned, the equation (1.3) with e � ax; x > 0;
a � 1ÿ a has a pathwise unique solution W which clearly has
W �0� � x:We will call such a process an a-perturbed RBM starting at
x: The reason for the uniqueness is easily seen because W behaves like
a singly-perturbed BM until it hits zero, and then it behaves like a
RBM until it attains a new maximum, and so on. Our ®rst result
concerns the number of ``round trips'' performed by such a process,
where a ``round trip'' means a section of a path lying between two
maxima and containing a visit to zero.

Lemma 1 If an a-perturbed RBM W starting at x > 0 has law Q�x� and
N�t� denotes the number of round trips completed by W by time t then
for any t > 0; e > 0 it holds that

lim
x#0

Q�x�
N�t�

a log xj j ÿ 1

���� ���� > e

� �
� 0 : �2:1�

Proof. It is easily seen that if N� � N�Vh�, where Vh denotes an ex-
ponentially distributed random variable of parameter h� � h2=2 which
is independent of W ; then (2.1) is equivalent to

lim
x#0

Q�x�h expÿ kN�

a log xj j
� �� �

� eÿk; for all h > 0; k > 0 ; �2:2�

where Q�x�h stands for expectation with respect to W. and the auxiliary
independent random variable Vh:

Take r 2 �1=2; 1� and write

q�x� � q�x; h; r� :� Q�x�h f1ÿ rN�g � Q�x�h;rfN� > Kg ;

where K is independent of W and Vh with P �K � k� � �1ÿ r�rk,
k � 0; 1; 2; . . . and Q�x�h;r stands for expectation with respect to W. and
the auxiliary independent random variables Vh and K: Since the bi-
variate process �W ;MW � is strong Markov (see [3]), for k � 0 we get
the decomposition
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Q�x�h;r�N� > k�

�
Z

y�x
Q�x�h �T0 < Vh;MW

T0
2 dy�Q�x�h � ~Ty < ~Vh jMW

T0
� y�Q�y�h;r� ~N� � k� :

Here T0 � inf�t � 0 : Wt � 0�; ~W� � WT0��; ~Ty � inf�t � 0 : ~Wt � y�; and
~Vh denotes another independent exponentially distributed random
variable of parameter h�. Now, given MW

T0
� y, ~W behaves like re-

¯ected Brownian motion until it hits y, and thereafter its law is Q�y�.
So writing R for the law of a RBM(0� and Rh for expectation with
respect to R: and the independent random variable ~Vh we see by
conditioning on the value of MW

T0 that

q�x� �
Z

y�x
Q�x�h �T0 < Vh;MW

T0
2 dy�Rh�Ty < ~Vh�f�1ÿ r� � rq�y�g :

�2:3�

Of course, Rh�Ty < ~Vh� � 1= cosh�yh�, and under Q�x� the law of W� ÿ x
up to time Tÿx coincides with that of singly a-perturbed BM starting
from zero. Thus, according to a recent result in [6], we have

Q�x�h fT0 < Vh;MW
T0
2 �y; y � dy�g � ah sinh xh� �a dy

sinh yh� �a�1
:

Introducing /�x� � q�x�=�sinh hx�a we can rewrite (2.3) as

/�x� � ah
Z 1

x

�1ÿ r� � r�sinh yh�a/�y�
sinh yh� �a�1cosh yh

dy :

Di�erentiating this yields

ÿ/0�x� � ahf�1ÿ r� � r�sinh xh�a/�x�g
sinh xh� �a�1cosh xh

;

which can be rewritten as

d
dx
f�tanh xh�ra/�x�g � ÿ ah�1ÿ r��tanh xh�ra

sinh xh� �a�1cosh xh

� ÿah�1ÿ r�
�sinh xh�1��1ÿr�a�cosh xh�ra�1

:

It follows that

q�x� � sinh xh� ��1ÿr�a

�cosh xh�ra
c�r; h� �

Z 1
xh

a�1ÿ r�
�sinh y�1��1ÿr�a�cosh y�ra�1

dy

( )
;
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where c�r; h� is a constant of integration. However since r > 1=2 we see
that c�r; h� 6� 0 would imply that q�x�j j ! 1 as x!1; which is im-
possible, so c�r; h� � 0 and we deduce, after a change of variable, that

q�x� � sinh xh� ��1ÿr�a

�cosh xh�ra
Z 1
sinh xh

a�1ÿ r�
t1��1ÿr�a�1� t2��ra�2�=2

dt : �2:4�

Now with k > 0 ®xed we put r � r�x� � expÿk= log xj j and note

that as x # 0 we have log xj j � �1ÿ r� ! k; �cosh xh�ra ! 1; and eka�
�sinh xh��1ÿr�a ! 1: Using these facts and an integration by parts, we
see that as x # 0Z 1

sinh xh

a�1ÿ r�
t1��1ÿr�a�1� t2��ra�2�=2

dt

� 1

sinh xh� ��1ÿr�a�cosh xh�ra�2
ÿ
Z 1
sinh xh

�2� ra�t
t�1ÿr�a�1� t2��ra�4�=2

dt

! eka ÿ
Z 1
0

�2� ra�t
�1� t2��a�4�=2

dt � eka ÿ 1 :

We conclude that 1ÿ q�x� ! eÿka; which establishes (2.2). (

We next want to investigate the situation where, for a ®xed sample
path B��x�; we have two solutions of (1.3) with di�erent values of e: It
is therefore convenient to discuss a deterministic version of (1.3),
where B��x� is replaced by an arbitrary continuous function b�, which
is null at zero. So consider the equation

wt � d � bt � lt � amw
t ; t � 0 ; �2:5�

where d > 0; mw
t � sups�t ws;w: � 0, and l: is any continuous, in-

creasing function which is null at zero and such that the measure dlw
s is

carried by fs : ws � 0g. Note that we do not assume that w admits a
local time but we will still show that, under the above assumptions,
(2.5) has a unique solution pair �w:; l:� whose restriction to �0; t�; for
any t; is a function of d and �bs; 0 � s � t�: First, it is clear that any
solution of (2.5) must be continuous, and it is also clear that the
function

w�0�t � d � bt � a� sup
s�t
�d � bs�

is the unique solution of (2.5) for 0 � t � s0; where

s0 � infft : w�0�t � 0g: (Recall that a� � a=�1ÿ a�:) However Skorok-
hod's re¯ection principle (see [11], p 229) then shows that if

w�1�t � bt ÿ bs0 � sup
so�s�t

f�bs0 ÿ bs� ^ 0g
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and s1 � infft > s0 : w�1�t � sups�s0�w�0�s �g; then w�1�t is the unique so-
lution of (2.5) on the interval [s0; s1�. We deduce that (2.5) has a
unique solution on �0;1� whenever the sequence �sn; n � 0� which we
get by repeating the above procedure is such that limn!1 sn � 1:
However, if this failed we would have limn!1 sn � s <1; and, by
construction, ws

2n
� m�w�s2n

; and ws2n�1 � 0 for n � 0: This would imply
that m�w�s � ws � 0; which is impossible, and the conclusion follows.
(A similar argument has been applied to (2.3) in [8].)

In the next two results we show that two solutions of (2.5) which
are initially close together cannot get too far apart.

Lemma 2 Assume that a 2 �1=2; 1�, let b be a continuous function with
b0 � 0; write (w; lw� for the solution of (2.5) and �z; lz� for the solution of

zt � d 0 � bt � lt � amz
t ; t � 0 ; �2:6�

where d 0 � d � ad; d > 0: De®ne

c � infft � 0 : wt > ztg; h � infft > c : zt � mz
tg ;

where inf ; � 1: Then it holds that with a� � a=�1ÿ a�;
sup
t<h

zt ÿ wtj j � da� : �2:7�

Moreover if h <1 then

mw
h � wh � zh � d1 ; �2:8�

where 0 � d1 � da�:

Proof. The essence of the argument is that, on any time interval on
which neither z or w take the value 0 or attain a new maximum, the
paths of z and w are just displaced versions of the path of b. Moreover
the gap between the paths decreases when the lower of them is at 0
and can only increase at the maximum if the paths cross each other.
The following ®gure illustrates this schematically.

The technical argument is as follows. Initially we have
z0 � d 0=a � w0 � d; and since both z and w are continuous it is clear
that either zt � wt for all t, in which case h � c � 1; or zc � wc and
wt > zt on �c; c� e� for some e > 0: In the ®rst case we have lw

t � lz
t

and mz
t � mw

t � d for all t, and hence

zt ÿ wt � ad� lz
t ÿ lw

t � a�mz
t ÿ mw

t � � ad� ad � d ;

so that (2.7) holds, since a� � 1. In the second case these inequalities
hold for t < c; and we conclude that mz

t � mw
t � d and

supt<c zt ÿ wtj j � d: Moreover, in order that wt > zt on some interval
�c; c� e� we must have mw

c � wc and mz
c > zc; as in all other cases we
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would have w�c� e� ÿ w�c� � z�c� e� ÿ z�c� for all small enough e:
(Note in particular that we cannot have w�c� � z�c� � 0:� Now take
any t 2 �c; h�; and write r � supfs 2 �c; t� : ws � mw

s g: Then
0 � wt ÿ zt � wr ÿ zr; and if we write Df � fr ÿ fc for any function f ,
then Dlz � Dlw;Dmz � 0; and Dmw � Dw: Thus from (2.5) and (2.6) we
have a Dw � Db� Dlw;Dz � Db� Dlz and we see that a Dw � Dz:
Hence Dwÿ Dz � a�Dz � a�d; since mz

c � zc � d and r � h: This es-
tablishes (2.7) for h � 1; and when h <1 we can take t � r � h to
see that (2.8) holds. (

Lemma 3 Assume the conditions of Lemma 2 hold and de®ne nt =
#(round trips completed by w� by time t). Then for any t > 0

sup
s�t

zs ÿ wsj j � d�a��2nt�1 : �2:9�

Proof. Using the notation of Lemma 2 we de®ne sequences �cn; n � 1�
and �hn; n � 1� by c1 � c; h1 � h; c2 � infft � h1 : zt > wtg; h2 �
infft > c2 : wt � mw

c
2

g; etc. Then it follows from Lemma 2 that c2 and

h2 play the same roÃ les for the shifted path bh1�� as do c1 and h1 for b�,
except that z and w are interchanged and d is replaced by d1: We
deduce that

sup
h1<t<h2

zt ÿ wtj j � d1a
� � d�a��2 ;

Fig. 1.
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and that if h2 <1
mz

h2 � zh2 � wh2 � d2; where d2 � d�a��2 :

Repeating this process gives the bound

sup
s�t

zs ÿ wsj j � d�a��ct�1 ;

where ct � supfn : hn � tg: Finally it can be seen that on any round
trip of w the number of changes of sign of zÿ w is at most two, so that
ct � 2nt, which gives (2.9). (

In order to combine the above result with that of Lemma 1, we
need the following simple fact.

Lemma 4 For any x 2 �0; 1�; a 2 �1=2; 1� with a � 1ÿ a and a� � a= a
we have

�a��2a log xj j � xÿ0�6 : �2:10�
Proof. The function f �y� � 2�1ÿ y� log� y

1ÿy� has a single maximum
on �1=2; 1� whose value is approximately 0 � 56: (

We can now give the

Proof of Theorem 1 Recall that we only treat the case a 2 �1=2; 1�,
which will be assumed hereafter. First, we demonstrate the existence
of a solution of (1.1) which is adapted to �Ft; t � 0�; the ®ltration of
B: Note that according to Lemma 1 there exists a deterministic se-
quence yn # 0 with y1 < 1 and such that

Qx Nt

a log xj j ÿ 1

���� ���� > 1=2

� �
� 1

n2
for all 0 < x � yn and n � 1 : �2:11�

Now it is clear that we can ®nd a sequence �un; n � 1� of stopping
times for B such that un # 0 and

IB
un

�� �� � MB
un
� Bun ; n � 1 : �2:12�

Furthermore, if we put xn � Bun we can, and will assume that
0 < xn < 1, and that xn � ayn for all n: The process B�n� de®ned by
B�n�t � Bun�t ÿ Bun � Bun�t ÿ xn; t � 0; is a BM(0) so with probability
one its sample paths are continuous and there exists a unique solution
fW �n�
� �x�;L�n�� �x�g of the equation (2.5) with d replaced by xn�x� and

bt replaced by B�n�t x� �: By construction, W �n� is adapted to (Fun�:�; so
(2.5) gives its semimartingale decomposition in this ®ltration. We can
therefore identify L�n� with 1

2 LW �n� ; to see that W �n� is a solution of

Wt � xn � B�n�t � aMW
t � 1

2 LW
t ; t � 0 : �2:13�
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Now we de®ne ~W �n� by

~W �n�
t �

txn
aun

if t < un;

W �n�
tÿun

if t � un :

(
Then ~W �n� is adapted to the ®ltration (G

�n�
t , t � 0�; where G�n�t �Ft_un ,

and solves

Wt � ~B�n�t � aMW
t � 1

2 LW
t ; t � 0 ;

where

~B�n�t �
txn
un

if t < un;
Bt if t � un :

�
We will show that � ~W �n�; n � 1� is a Cauchy sequence for a.s. con-
vergence on compacts, i.e. for each ®xed t

sup
m>n

sup
0�s�t

~W �n�
s ÿ ~W �m�

s

�� �� ! 0 a.s. as n!1 : �2:14�

To see this we put, for m > n; Ŵ �m;n�
t � ~W �m��un � t� �

W �m��un ÿ um � t�; t � 0; and check that Ŵ �m;n� satis®es

Ŵ �m;n�
t � xn � dn;m � B�n�t � aMŴ �m;n�

t � 1
2 LŴ �m;n�

t ; t � 0 ;

where dn;m � 1
2 LW �m�

unÿum
: Now (2.13) and the re¯ection principle give

dn;m � sup
s�unÿum

�ÿ �xm � B�m�s � a sup
u�s

W �m�
u �	 � IB�un�

�� �� � xn ; �2:15�

where we have used (2.12). Thus making the obvious identi®cations
bt � B�n�t �x� etc, we have that with probability one the functions

wt � W �n�
t �x� and zt � Ŵ �m;n�

t �x� satisfy equations (2.5) and (2.6) with
d � xn x� � and d � dn;m x� �=a, so that Lemma 3 yields

sup
s�t

Ŵ �m;n�
s ÿW �n�

s

�� �� � dn;m

a
�a��2N �n�t �1 ; �2:16�

where N �n�t denotes the number of round trips completed by W �n� by
time t. Now it is easy to show that

sup
m>n

sup
0�s�un

~W �n�
s ÿ ~W �m�

s

�� �� ! 0 a.s. as n!1 ;

so (2.14) will follow if we can show that

sup
m>n

sup
0�s�t

W �n�
s ÿ Ŵ �m;n�

s

�� �� ! 0 a.s. as n!1 : �2:17�

To do this we exploit the fact that W �n� has measure Q�zn�; where
zn � xn=a; and, given xn, is independent of Fun : Speci®cally, since
zn � yn, (2.11) and Lemma 1 show that
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X1
n�1

Q�zn�f2N �n�t > 3a log znj jg <a:s:1 :

Then the Borel-Cantelli lemma shows that, a.s. 9 n0�x� <1 such that
2N �n�t � 3a log znj j for all n � n0�x�: But (2.15) gives dn;m � azn and
Lemma 4 shows that, a.s. for all large enough n;

sup
m>n

dn;m

a
�a��2N �n�t �1 � a�:zn:�zn�ÿ0�9 � a�:z0�1n ;

and it follows from (2.16) that (2.17) and hence (2.14) hold. This in
turn demonstrates that, a.s., W � limn!1 ~W �n� exists and solves (1.1).
Finally, noting that for t > 0 (G

�n�
t , n � 1� is a decreasing sequence of

r-®elds whose intersection is Ft; we conclude that W is adapted to
�Ft; t � 0�:

Next we show that the above argument can easily be adapted to
establish the uniqueness result. So, let Z be any solution of (1.1) and
�un; n � 1� the sequence of stopping times for B introduced above.
Then it is immediate from (1.1) that Zun � MZ

un
; LZ

un
� IB

un

�� ��; and that
Z�n�� � Zun�� satis®es

Z�n�t � xn � d0n � B�n�t � a sup
s�t

Z�n�s �
1

2
LZ�n�

t ; t � 0 ;

where d0n � LZ
un
: Applying the comparison technique again we see that

sup
0�s�t

W �n�
s ÿ Z�n�s

�� �� ! 0 a.s. as n!1 ;

and it follows that Z�n� ! W a.s. on compacts. However un # 0 and
any solution of (1) has to be continuous, so Z�n� ! Z a.s. and we
conclude that, a.s., Z � W : (

3 Doubly perturbed Brownian motion

Until further notice we will be treating the case q�a;b� < ÿ1; and
speci®cally we will assume that a 2 �0; 1�; b < 0; and
qj j � a

1ÿa � bj j
1� bj j > 1: (The only other way that q�a; b� < ÿ1 can arise is

if these conditions are satis®ed with a and b interchanged, in which
case we consider ÿX :) Note that we have a� � a

1ÿa > qj j > 1: Again we
are going to employ a pathwise comparison argument, so it is con-
venient to consider a deterministic version of (1.2) with a non-zero
initial condition, which we write as

xt � bt � amx
t � bixt ; t � t0 > 0 : �3:1�
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Here of course mx
t � sup0�s�tfxsg; ixt � inf0�s�tfxsg; b is a continuous

function with b0 � 0; and we also assume that bt0 > 0:
Our ®rst claim is that, given any d > 0 with ad � bt0 ; (3.1) has a

unique solution, subject to xt0 � d � mx
t0 and ix

t0 � fad ÿ b�t0�g=b :� i0:
This is easily seen because we have xt � x�0�t :� bt � a�mb

t � bi0
for t0 � t � s0; where s0 � inffs > t0 : x�0�t � i0g: Then we have

xt � x�1�t :� bt � amx
0�s0� � b�ib

t for s0 � t � s1; where s1 � inffs > s0 :

x�1�t � mx
0�s0�g: Since it is straightforward to check that the sequence

�sn; n � 0� which we get by repeating this process is such that
limn!1 sn � 1; the claim is established.

Next, with �un; n � 1� as in the previous section, we put
X �n�t � �txn�=�aun� for 0 � t � un; where xn � Bun ; and for t > un let
X �n�t be the solution of the version of (3.1) which we get by replacing b�
by B��x�; t0 by un; d by xn�x�=a and i0 by 0: Clearly for each n � 1 X �n�

is adapted to the ®ltration �G�n�t ; t � 0� and satis®es (1.2) on �un;1�:
Now let Y be any solution of (1.2), and note that since b < 0;

Bun � MB
un

implies that Yun � MY
un
; and that we also have

IY
un

�� �� � sup
t�un

fÿBt ÿ aMY
t ÿ bIY

t g � IB
un

�� �� :
It follows that Yun � �xn � dn�=a where dn � bIY

un

�� �� � bIB
un

�� �� � bj jxn; by
construction. The tool for comparing Y and X �n� is given by the fol-
lowing result.

Lemma 5 Suppose that for a ®xed continuous b with bt0 � ad > 0; x and
y are solutions of (3.1) with xt0 � mx

t0 � d; yt0 � my
t0 � d � d; ix

t0 � 0; and
iyt0 � ad=b: Then for any t > t0 we have

sup
t0�s�t

xs ÿ ysj j � d�a��2mt�1 ; �3:2�

where mt denotes the number of tours completed by x on �t0; t�; and a tour
consists of two visits to the path maximum separated by a visit to the
path minimum.

Proof. The key to our analysis is to investigate the time points at
which the paths of x and y cross. It is easy to see that any such time
point is a point of increase of exactly one of mx;my ;ÿix; and ÿiy : We
will concentrate on ``crossovers at the maximum'', which occur at time
points c such that

xc � yc � minfmx
c;m

y
cg; and 9e > 0 with xs 6� ys for s 2 �c; c� e� :

�3:3�
It is obvious that immediately after time c both x� and y� will follow

a version of b� perturbed only at the maximum, but the crucial point,
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which is used repeatedly in the following argument, is that if mx
c < my

c
then x� will be a�ected by this perturbation immediately after time c,
whereas y� will only be a�ected by this perturbation when it attains the
value my

c. Moreover since a > 0 this perturbation will have an upwards
e�ect and we conclude that for some e > 0 we must have xs > ys for
s 2 �c; c� e�: In this case we will say that x overtakes y at time c; and
when ys > xs for s 2 �c; c� e� for some e > 0 we will say that y over-
takes x at time c; clearly this can only happen when mx

c > my
c: Cross-

overs at the minimum are de®ned analogously, but note that since
b < 0, when ÿx overtakes ÿy at time c, we have ixc < iyc:

Suppose now that x overtakes y at time c > t0; and the next
crossover at the maximum occurs at time c� > c: Then we will show
that one of the two following situations must arise.

A. There is exactly one crossover at the minimum on the time
interval �c; c��; x overtakes y at c�; and if d� :� my

c� ÿ mx
c� then

0 < d� < d and
sup

c�s�c�
xs ÿ ysj j � d : �3:4�

B. There is no crossover at the minimum on �c; c��; y overtakes x at
c�; 0 < ÿd� < a�d and

sup
c�s�c�

xs ÿ ysj j � a�d : �3:5�

(These two situations are illustrated schematically in Figure 2)

Fig. 2.
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To establish the above claim, note ®rst that, since both x and y
satisfy (3.1), at any time s such that xs � ys we have

a�mx
s ÿ my

s� � bj j�ix
s ÿ iys� : �3:6�

Now assume there is at least one crossover at the minimum on �c; c��
and the ®rst such occurs at time d; thus

xd � yd � maxfixd ; iydg; and 9e > 0 with xs 6� ys for s 2 �d; d � e� :
�3:7�

Since x overtakes y at time c we have xs � ys for s 2 �c; d�; and from
(3.6) we know that ixc < iyc: But since ÿx overtakes ÿy at time d we
must also have ixd < iyd : Also ix

d � ixc since otherwise 9 u 2 �c; d� with
yu � xu < ixc; which implies ixd � iyd ; which is a contradiction. Another
application of (3.6) shows that mx

d < my
d ; and since my

c < my
d would

lead to a contradiction, we must also have my
c � my

d : It is then easy to
check that my

d � mx
d � bj jz=a; for some 0 � z � da= bj j: This implies,

using (3.6) again, that yd � iyd � ixd � z; and also that xs � ys � ad for
s 2 �c; d�:

On �d; c�� there cannot be a crossover at the minimum, (since ÿy
would have to overtake ÿx; which is precluded because ix < iy on this
interval) and as x overtakes y at time c� we must have mx

c� < my
c� : This

implies my
c� � my

d : Thus x overtakes y before y reaches its previous
maximum, and this implies that

d� � my
c� ÿ mx

c� � my
d ÿ mx

d � d :

Furthermore the maximum gap between x and y on �d; c�� occurs if x
reaches ixc before it reaches mx

c; and is at most z bj j
1� bj j � da

1� bj j � d:
So if there is one crossover at the minimum on �c; c�� we have case

A, and as we have already seen that more than one crossover is im-
possible the only alternative is that no crossover occurs on �c; c��, so
that xs � ys for s 2 �c; c��: Thus y must overtake x at time c�; and
hence my

c� < mx
c� and iy

c� < ix
c� . Since ix

c < iyc; we have
e :� inffs > c : ys � ixcg < c�; g :� xe ÿ ye > 0; and ixe � iye: Thus,
substituting into (3.1) we have ye � be � amy

e � bye ;
xe � be � amx

e � bye � ye � g; and hence mx
e � my

e � g=a: It is clear that
the maximum value of g=a occurs when y hits my

c before it hits iyc and
equals a�d; and that supc�s�e xs ÿ ysj j � a�d: On �e; c�� we can see that
xs ÿ ys � xe ÿ ye � g and my

c� ÿ mx
c� � my

e ÿ mx
e � a�d: Thus we have

case B, and our claim is established.
Now write c0 < c1 < c2 � � � for all the times at which crossovers at

the maximum occur after time t0: Note that the initial conditions
imply that either c0 � 1; or �t0; c0� is part of a type A interval. In
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either case we have supt0�s<c0 xs ÿ ysj j � d; and if c0 <1; then
my

c0 ÿ mx
c0 � d: The above analysis then shows that

sup
to�s�t

xs ÿ ysj j � d�a��kt�1 �3:8�

where kt denotes the number of type B intervals contained in �t0; t�.
However, if �cn1ÿ1; cn1�; �cn2ÿ1; cn2� are successive type B intervals, one
can see that, regardless of the existence of type A intervals between
them, on �cn1ÿ1; cn2�; x has to make at least two visits to its maximum
separated by a visit to its minimum. The bound kt � 2mt follows, and
then (3.2) follows from (3.8). (

Proof of Theorem 2 The ®nal ingredient required for the proof is an
estimate for the number of tours completed by X �n� by time t: (Recall
that X �n�was de®ned before Lemma 5.) First note that this is no more
than the number of round trips performed by fX �n�g� on �un; t�: This
in turn is no more than the number of round trips performed by ~W on
�0; t�; where ~Ws � X̂a�s�; s � 0; with X̂s � X �n�un�s; s � 0; and a the right-
continuous inverse of

A�s� �
Z un�s

un

1fX �n�v >0gdv �
Z s

0

1fX̂v>0gdv :

Now put B̂� � Bun�� ÿ xn (recall that xn � Bun�, so that B̂ is a BM 0� �
which is independent of fBs; s � ung; and note that X̂ is a FB̂-adapted
solution of

X̂t � xn � B̂t � a sup
s�t

X̂s � b
ÿ
inf
s�t

X̂s ^ 0
�
; t � 0 :

Thus X̂ is a FB̂-semimartingale, and since the support of dIX̂
s is

contained in fs : X̂s � 0g; we can apply Tanaka's formula to get

fX̂tg� � xn �
Z t

0

1fX̂s>0gdB̂s � a sup
s�t

X̂s � 1

2
LX̂

t ; t � 0 :

It is easy to check that LX̂
t � L ~W

A�t�; and replacing t by a�t� we see that

~Wt � xn � ~Bt � aM ~W
t � 1

2 L ~W
t ; t � 0 ;

where ~B is a BM 0� � independent of xn: This enables us to apply
Lemma 1, just as we did in the proof of Theorem 1, but with Lemma 5
replacing Lemma 3, to show that fX �n�; n � 1g is a Cauchy sequence
for a.s. convergence on compacts. This establishes the existence of an
adapted solution of (1.2). Moreover if Y is any solution of (1.2), then,
as we have already seen, because b < 0 we have
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Yun � MY
un
� �xn � dn�=a where dn � bIY

un

�� �� � bIB
un

�� �� � bj jxn: Thus, a.s.
y� � Y��x� satis®es (3.1) with t0; d; b�; d; replaced by un; xn=a,
B��x�; dn=a, respectively. Comparing y� with x� � X �n�� �x�; we conclude
that supun�s�t X �n�s ÿ Ys

�� ��! 0 a.s., and the uniqueness follows. (

The case q > 1: In essence, this is an easier case to deal with than the
case q < ÿ1; because now the perturbations reinforce each other. An
immediate consequence of this is that two solutions of (3.1) which
both attain a maximum at the same time cannot cross at any later
time. This makes it straightforward to adapt our methods to this
situation, but as the result is proved in [10], we omit the details.
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