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Abstract

In the present paper we compute the laws of some functionals of doubly perturbed Brownian
motion, which is the solution of the equation Xt = Bt + � sups6t Xs + � inf s6t Xs, where �; �¡ 1,
and B is a real Brownian motion. We �rst show that the process obtained by juxtaposing the
positive (resp. negative) excursions of this solution depends only on � (resp. �). Moreover,
these two processes are independent. As a consequence of this splitting we compute, by direct
calculations, the law of the occupation time in [0;∞) and we specify the joint distribution of
the time and position at which doubly perturbed Brownian motion exits an interval. c© 2000
Published by Elsevier Science B.V. All rights reserved.

MSC: 60J30; 60J20

1. Introduction

Let B be a real Brownian motion and �; � ∈ (−∞; 1); then the equation
Xt = Bt + � sup

s6t
Xs + � inf

s6t
Xs (1.1)

has no explicit solution except in the special cases �= 0 or �= 0, where it is unique
and corresponds to the reected Brownian motion perturbed by its local time, (i.e.
|Bt | − �Lt , �¿ 0). It is known from Davis (1997, 1999), Carmona et al. (1998),
Perman and Werner (1997) and the authors Chaumont and Doney (1999) that for
every �; � ∈ (−∞; 1) Eq. (1.1) admits a unique pathwise solution and this solution is
adapted to the natural �ltration of B. We will call it an �; �-doubly perturbed Brownian
motion or more simply, a doubly perturbed Brownian motion.
This process was �rst introduced by Le Gall and Yor (1986). In that paper, they

proved in particular that the solution of (1.1) ful�lls the ‘�rst Ray–Knight theorem’.
Some more complete results have been obtained in the special cases � = 0 or � = 0
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by Petit (1992) in her thesis (see also Carmona et al., 1994; Werner, 1995). More
recently, Carmona et al. (1998) and Perman and Werner (1997) studied the solution
of Eq. (1.1) and proved that whenever a solution exists, it veri�es both Ray–Knight
theorems. As a consequence, they showed that the time spent in the positive half-line
by this process is beta-distributed. This result extends the well known arcsine law of
Paul L�evy. In Section 3, we give a simple proof of this property. Our calculation avoids
the Ray–Knight theorems and is based on a classical decomposition of the process into
positive and negative excursions which is presented in Section 2.
Section 4 is devoted to the calculation of the joint distribution of the time and

position at which doubly perturbed Brownian motion exits from an interval. Put for
every x ∈ R, T (x) = inf{t¿0:Xt = x} and let �(a; b) = T (−a) ∧ T (b) be the time at
which the doubly perturbed Brownian motion X exits [ − a; b], (a¿ 0; b¿ 0). When
both � and � equal zero (that is for Brownian motion), it is well known that

P(X exits [− a; b] at b) = a
a+ b

:

Carmona et al. (1998) and Perman and Werner (1997) extended this result as follows:

P(X exits [− a; b] at b) = [B( ��; ��)]−1
∫ a=(a+b)

0
v ��−1(1− v) ��−1 dv

with ��=1− �; ��=1− � and B( ��; ��)=�( ��)�( ��)=�( ��+ ��). We may also characterize
the joint distribution of the time and position at which the Brownian motion exits from
an interval:

E(e−��(a;b); X (�(a; b)) = b) =
(

sinh �∗a
sinh �∗(a+ b)

)
; �¿0:

The corresponding expression has been computed by Doney (1998) for the case �=0,
� 6= 0, i.e. for singly perturbed Brownian motion, (see Theorem 3:1 of the present
paper). In Section 4 we deduce the corresponding result for doubly perturbed Brownian
motion from the singly perturbed case and the decomposition which is presented in the
following section.

2. Splitting into positive and negative excursions

Fix �¡ 1 and �¡ 1 and let X be the solution of Eq. (1.1). We construct the
processes of the positive and negative excursions of X , as follows.
Let A(1)t and A(2)t be, respectively, the time spent above and below zero by the

process X , that is

A(1)t :=
∫ t

0
1{Xs¿0} ds; A(2)t :=

∫ t

0
1{Xs60} ds

and de�ne their right continuous inverses by

a(1)t := inf{s; A(1)s ¿ t}; a(2)t :=inf{s; A(2)s ¿ t}:
We denote by W (1) (resp. W (2)) the processes obtained by juxtaposition of the positive
(resp. negative) excursions of X ; more formally,

W (1)
t :=X+(a(1)t ); W (2)

t :=X−(a(2)t ); (2.1)
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where X+ and X− are, respectively, the positive part and the negative part of the
process X . Let L(1) and L(2) be the semimartingale local times at 0 of W (1) and W (2),
respectively. Denote also by M (1) and M (2) the processes of the past-maximum of W (1)

and W (2), that is

M (1)
t := sup

s6t
W (1)
s and M (2)

t := sup
s6t

W (2)
s :

Finally, put

B(1)t =
∫ a(1)t

0
1{Xs¿0} dBs and B(2)t =

∫ a(2)t

0
1{Xs60} dBs:

Theorem 1. The processes W (1) and W (2) satisfy the following equations:

W (1)
t = B(1)t + 1

2L
(1)
t + �M (1)

t ; (2.2)

W (2)
t =−B(2)t + 1

2L
(2)
t + �M (2)

t : (2.3)

Moreover; B(1) and B(2) are independent Brownian motions.

Proof. Set IXs = supu6s − Xu and MX
s = supu6s Xu. Since the support of the measure

dIXs is contained in {X60}, Tanaka’s formula applied to X gives

X+t =
∫ t

0
1{Xs¿0} dBs + �M

X
t +

1
2
LXt ;

where LX is the semimartingale local time at 0 of X . Moreover, one easily checks that
L(1)(A(1)t ) = LXt . Then replacing t by a

(1)
t in this, we get (2.2). The second equation

(2.3) is obtained similarly. Finally, the fact that B(1) and B(2) are independent Brownian
motions is a direct consequence of Knight’s representation Theorem.

Note that these equations are equivalent and therefore, in the following of this
section, we will focus only on (2.2). The idea of splitting into positive and negative
excursions was already suggested by Yor (1992, Section 8), for perturbed Brownian
motion, and used by Chaumont and Doney (1999) to show that (2.2) admits a unique
pathwise solution adapted to the �ltration of B(1). A crucial consequence for the fol-
lowing is that W (1) and W (2) are independent. Henceforth, to simplify the notations in
(2.2) we will consider the equation

Wt = Bt + 1
2L
W
t + �M

W
t ; (2.4)

where B is any real Brownian motion, LWt the semi-martingale local time of W and
MW
t = sups6t Ws.
The problem of the existence and pathwise uniqueness of the solution of Eq. (2.2) has

already been discussed by Le Gall and Yor (1990), where they deal with a completely
di�erent topic, (windings of the planar Brownian curve). Actually, they showed the
following result:

Lemma 1. For every �¿ 0; the equation

Wt = �+ Bt + 1
2L
W
t + �M

W
t (2.5)

admits a unique pathwise solution. This solution is adapted to (FB
t ).
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For �¿ 0, the solution of (2.5) can be constructed explicitly. Indeed, since LW is
zero on an interval whose left-hand endpoint is 0 then this equation reduces to a
reection equation. Le Gall and Yor mentioned the di�culty of solving this equation
when � = 0. This result has been proved in Chaumont and Doney (1999). We recall
and reinforce it in Theorem 2 below.

Theorem 2. For every Brownian motion B; and �¡ 1; Eq. (2:4) admits a unique
solution. This solution is adapted to (FB

t ); the natural �ltration of B; and moreover
the bivariate process (W;MW ) is strongly Markovian in (FB

t ).

Proof. The �rst part of this theorem is proved in Chaumont and Doney (1999), so it
remains to prove that (W;MW ) is strongly Markovian. Let T be a stopping time in the
�ltration generated by B. Putting B̃t = BT+t − BT and W̃ t = WT+t , one easily checks
that W̃ satis�es the equation

W̃ t =WT + B̃t + 1
2L
W̃
t + �(M

W̃
t −MW

T )
+

where LW̃ is the local time at 0 of W̃ and MW̃ is its past maximum process. For every
x ∈ R and every y¿0, one can show, as in (2.5) that the equation

W̃ t = x + B̃t + 1
2L
W̃
t + �(M

W̃
t − y)+

admits a unique solution which is adapted to the �ltration generated by B̃. Indeed,
except when x=0 and y=0, one can solve this equation by elementary reexions on
intervals which cover R+ as in Le Gall and Yor (1990), (see the next lemma). When
x= 0 and y= 0, this equation is exactly the same as (2.2) and in that case, the result
comes from Chaumont and Doney (1999).
Finally, since B̃ is independent of FB

T , then W̃ and so (W̃ ;MW̃ ) depends on FB
T

only through (WT ;MW
T ).

We end this section by stating the two following lemmas which will be used several
times in the sequel:

Lemma 2. Let Q(�) be the law of the solution of Eq. (2:5); then Q(�) converges as �
goes to 0 to a law Q.

Proof. Apply Theorem 2 and let W be a solution of Eq. (2.4) which is adapted to
(Ft). For �¿ 0, de�ne S�= inf{s;Ws= �} and put W (�)

t =WS�+t and B
(�)
t =BS�+t −BS� .

Then the process W (�) satis�es the equation

W (�)
t = (1− �)�+ B(�)t + 1

2L
W (�)

t + �MW (�)

t

and B(�) is a Brownian motion since S� is a Ft-stopping time. Therefore, the process
W (�) has law Q((1−�)�) and since it converges uniformly to W over every compact
interval, we deduce that Q((1−�)�) converges to a law Q.
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Lemma 3. With the notations introduced at the beginning of this section; we have;

A(1)t = inf{s; L(1)s = L(2)t−s}; (2.6)

A(2)t = inf{s; L(2)s = L(1)t−s}: (2.7)

Proof. These identities do not depend on the particular nature of X and it can easily be
checked that they hold for any continuous semimartingale. They are direct consequences
of the de�nition of the processes W (1) and W (2) from which we see that

L(1)(A(1)t ) = L
X
t and L(2)t (A

(2)
t ) = L

X
t : (2.8)

By the continuity of L(1) and L(2), the identity L(1)(A(1)t ) = L
(2)
t (A

(2)
t ) is equivalent to

both (2.6) and (2.7).

A �rst consequence is that the process X is a measurable function of W (1) and W (2).
Indeed, we just have seen in Lemma 3 that A(1)t and A(2)t are measurable functionals of
W (1) and W (2). On the other hand, we have the relation Xt =W (1)(A(1)t )−W (2)(A(2)t ),
and the conclusion follows.

3. The law of the time spent above 0 by doubly perturbed Brownian motion

Two of the most interesting facts known about doubly perturbed Brownian motion are
the analogues of the Ray–Knight theorems and the Arc-sine law for Brownian motion.
These were established in Carmona et al. (1998) for the case |��=(1− �)(1− �)|¡ 1,
but as was pointed out in Le Gall and Yor (1986), once the pathwise uniqueness is
established their proofs apply equally to the general case. In their proofs, extensive use
is made of the fact that the doubly perturbed Brownian motion enjoys the Brownian
scaling property; again, once the uniqueness is known, this is a simple consequence of
the de�ning relationship (1.1). (See Proposition 2:1 of Carmona et al., 1998).
Although we neither state nor use the Ray–Knight theorems for doubly perturbed

Brownian motion, we do mention that our decomposition shows that these are the
immediate consequences of the corresponding results for the singly perturbed Brownian
motion (i.e. reected Brownian motion perturbed by its local time at 0, or equivalently
doubly perturbed Brownian motion with �=0). There are several proofs of these results
(Carmona et al., 1998; Werner, 1995; Perman and Werner, 1997; Petit, 1992; Doney,
1998), which are considerably simpler than the proofs for the doubly perturbed case
in Carmona et al. (1998).
The following result, which reduces to the classical Arc-sine theorem when �=�=0,

was established in Carmona et al. (1998).

Theorem 3 (Carmona et al., 1994). If X is the solution of (1:1) then t−1A(1)t = t−1∫ t
0 1{Xs¿0} ds has the Beta( ��=2;

��=2) distribution; where ��= 1− �; �� = 1− �.

This result was derived in Carmona et al. (1998) from the �rst Ray–Knight theorem
for X . However, as has also been observed in Proposition 4 of Perman and Werner
(1997), it is actually a consequence of the fact that the random variables A(i)(�1),
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(where � is the inverse of LX ) are independent and their inverses have Gamma distri-
butions. Since (2.8) gives A(i)(�1)=�

(i)
1 , where �

(i) is the inverse of L(i), the semimartin-
gale local time at 0 of W (i), our approach makes the independence obvious. Although
the distribution of A(i)(�1) can be deduced from the Ray–Knight theorems for singly
perturbed Brownian motion, we give an alternative approach to this calculation. This
depends on the following result, established in Doney (1998), which speci�es the joint
distribution of the time and position at which singly perturbed Brownian motion exits
from a �nite interval. In this section �(a; b)=T (−a)∧T (b) denotes the time at which
X exits [− a; b], (a¿ 0; b¿ 0).

Theorem 4 (Doney, 1998). When � = 0; we have

E(e−��(a;b); X (�(a; b)) = b) =
(

sinh �∗a
sinh �∗(a+ b)

)��
; (3.1)

E(e−��(a;b); X (�(a; b)) =−a) = ���∗(sinh �∗a) ��
∫ b

0

dt
(sinh �∗(t + a)) ��+1

; (3.2)

where �∗ =
√
2�.

From this we deduce

Proposition 1. The random variable [8�(1)1 ]
−1 has the Gamma( ��=2) distribution.

Proof. Writing, as in Section 3, Q(�) for the law of the solution W of (2.5), we
can use the observation that W behaves like singly perturbed Brownian motion until
T0 = inf {t; Wt = 0}, to deduce from (3.2) that if V� is independent of W and has an
exponential distribution of parameter �, then for 0¡x¡y

Q(x)(T06V�; MW (T0) ∈ dy) = ���∗(sinh �∗x) ��

(sinh �∗y) ��+1
dy: (3.3)

Next, the observation that the bivariate process (W;MW ) is strong Markov leads to the
decomposition, for x¿ 0,

Q(x)(LW (V�)¿V�)

=
∫
y¿x

Q(x)(T06V�; MW (T0) ∈ dy)Q(x)(LW̃ (V�)¿V� |MW (T0) = y); (3.4)

where W̃ (·) =W (T0 + ·) and V� denotes another independent exponentially distributed
random variable. Now, given MW (T0) = y, W̃ behaves like the reected Brownian
motion until it hits y, and thereafter its law is Q(y). So writing R for the law of a
reected Brownian motion starting from 0 and denoting the LHS of (3.4) by q(x), we
see that

Q(x)(LW̃ (V�)¿V� |MW (T0) = y)

=R(LW (V� ∧ Ty)¿V�) + q(y)R(LW (Ty)¡V�; Ty ¡V�)

=
2�

2� + �∗ coth �∗y
+

�∗q(y)
(2� + �∗ coth �∗y)sinh �∗y

(3.5)
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by standard excursion calculations. Substituting (3.3) and(3.5) into (3.4) and de�ning
�(x) = q(x)=(sinh �∗x) �� leads to the equation

�(x) = ���∗
∫ ∞

x

2�(sinh �∗y)� + �∗�(y)
(2� + �∗ coth �∗y)(sinh �∗y)2

dy:

Di�erentiating this yields an ordinary di�erential equation for � which can be solved
explicitly. The solution yields

q(x) = (2� sinh �∗x + �∗ cosh �∗x) ��
∫ ∞

x

2 ���∗�
(2� sinh �∗y + �∗ cosh �∗y) ��+1

dy

and letting x↓0, we deduce from Lemma 2 that

Q(LW (V�)¿V�) = ��(�∗) ��+1
∫ ∞

0

2�
(2� sinh �∗y + �∗ cosh �∗y) ��+1

dy:

Of course the LHS of this is �
∫∞
0 e−�tQ(LW (V�)¿t) dt, and Q(�Wt 6V�) =

Q(LW (V�)¿t), so undoing the Laplace transform yields

Q(�Wt 6V�) =
(�∗)�+1

2 ���( ��)
t ��
∫ ∞

0

exp(−2−1t�∗coth �∗y)
(sinh �∗y) ��+1

dy:

Putting t = 2 in this and making the change of variable coth �∗y = 1 + u leads to

Q(�W2 6V�) =
(�∗) ��e−�

∗

�( ��)

∫ ∞

0
e−�

∗u(u(u+ 2))−�=2 du:

Using an integral representation for K�, the modi�ed Bessel function of order �, which
is given as formula 13, p. 138 of Bateman et al. (1954), we �nally see that

Q(�W2 6V�) =
(2�∗)2

−1 ���(2−1( ��+ 1))√
��( ��)

K2−1 ��(�
∗): (3.6)

On the other hand, another integral representation for K� (Eq. 29, p. 146 of Bateman,
1954) shows that if H has a Gamma(�) distribution then

�(�)E(e−�=(2H)) =
∫ ∞

0
e−(�

∗)2=(4t)e−t t�−1 dt = 2(�∗=2)�K�(�∗): (3.7)

Comparing (3.6) and (3.7), (with � = 2−1 ��), we see that the Q distribution of �W2 is
that of (2H)−1, and Proposition 1 follows from the scaling property.

Proof of Theorem 3. Using the scaling property we have, just as in the Brownian case
(see e.g. Yor, 1992, p. 104)

1
t
A(1)t

(d)
= A(1)1

(d)
=
A(1)(�1)
�1

(d)
=

A(1)(�1)
A(1)(�1) + A(2)(�1)

; (3.8)

where � is the inverse of LX . But putting t = �1 in (2.8), we see that

A(1)(�1) = �
(1)
1 ; A(2)(�1) = �

(2)
1 ; (3.9)

where �(i) is the inverse of L(i), the symmetric local time of W (i) at 0. Thus the
A(i)(�1) are independent, and using Proposition 1 the result follows from (3.8) and
a well-known connection between Gamma distributed random variables and the Beta
distribution.
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4. The two-sided exit problem for doubly perturbed Brownian motion

Our aim in this section is to show how we can exploit the independence of the
W (i) to establish the following extension of Theorem 4 to doubly perturbed Brownian
motion.

Theorem 5. For doubly perturbed Brownian motion X; we have

E(e−��(a;b); X (�(a; b)) = b) = c(�; �)
∫ a

0

(sinh �∗b) ��(sinh �∗u) ��−1

(sinh �∗(b+ u)) ��+ ��
�∗ du; (4.1)

where ��= 1− �; �� = 1− � and c(�; �) = [B( ��; ��)]−1 = [�( ��)�( ��)]−1�( ��+ ��):

Note. Since −X is a (�; �)-doubly perturbed Brownian motion, we can read o�

E(e−��(a;b); X (�(a; b)) =−a)
from (4.1) by interchanging � and � and a and b.

Proof. The crucial point is that if we write

F (�)b (�; ds) = P(T
(1)
b ¡V�; L(1)(T

(1)
b ) ∈ ds)

and

G(�)a (�; s) = P(�
(2)
s ¡V�; M (2)(�(2)s )¡a);

where T (i), �(i), L(i) denote the hitting times, inverse local times, and local times of
W (i), then it holds that

E(e−��(a;b); X (�(a; b)) = b) =
∫ ∞

0
F (�)b (�; ds)G

(�)
a (�; s): (4.2)

To see this, note �rst that the LHS of (4.2) can be written as P(Tb¡V�; IX (Tb)¡a).
Now, for b¿ 0,

Tb = A(1)(Tb) + A(2)(Tb)

= T (1)b + A(2)(sup {s6Tb;Xs = 0})
= T (1)b + �(2)(L(Tb)):

But, from (2.8)

L(Tb) = L(1)(A(1)(Tb)) = L(1)(T
(1)
b );

so that

Tb = T
(1)
b + �(2)(L(1)(T (1)b )) (4.3)

and

IX (Tb) =M (2)(A(2)(Tb)) =M (2)(�(2)(L(1)(T (1)b ))): (4.4)
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Thus, decomposing according to the value of L(1)(T (1)b ) (=L(Tb)) and using (4.3)
and(4.4) gives

P(Tb¡V�; IX (Tb)¡a)

=
∫ ∞

0
P(T (1)b + �(2)s ¡V�; M (2)(�(2)s )¡a; L(1)(T (1)b )∈ds)

=
∫ ∞

0
P(T (1)b ¡V�; L(1)(T

(1)
b )∈ds)P(�(2)s ¡V�; M (2)(�(2)s )¡a)

=
∫ ∞

0
F (�)b (�; ds)G

(�)
a (�; s)

which is (4.2).
It remains only to calculate F and G. We �nd G by noting that (3.1) gives the

value of the LHS of (4.2) when � = 0. But in this case W (2) is a reected Brownian
motion, so it is straightforward to check that

G(0)a (�; s) = exp(−2−1�∗s coth �∗a):
Thus, writing 2−1�∗ coth �∗a= �, (4.2) with � = 0 states that∫ ∞

0
F (�)b (�; ds)e

−�s =
(

�∗

sinh �∗b(2� + �∗ coth �∗b)

)��
or equivalently that

F (�)b (�; ds) =
ds
s�( ��)

(
�∗s

2 sinh �∗b

)��
exp(−2−1�∗s coth �∗b): (4.5)

But, applying (3.2) to −X , we also know the LHS of (4.2) when � = 0. Writing
�= 2−1�∗ coth �∗b and using (4.5) we get∫ ∞

0
G(�)a (�; s)e

−�s ds=
2 sinh �∗b

�∗

∫ a

0

�∗ ��(sinh �∗b) ��

(sinh �∗(b+ u)) ��+1
du

= 2 ��
∫ a

0

(
�∗

2� sinh �∗u+ �∗ cosh �∗u

)��+1
du

or equivalently

G(�)a (�; s) =
2 �� s ��

�( �� + 1)

∫ a

0

(
�∗

2 sinh �∗u

)��+1
exp(−2−1s�∗ coth �∗u) du: (4.6)

Substituting (4.5) and (4.6) into (4.2) we see that the integration with respect to s can
be done to arrive at formula (4.1).

An immediate corollary of this is a result which is also proved in Perman and Werner
(1997):

Corollary 1. If X is an (�; �)-doubly perturbed Brownian motion then

P(X (�(a; b)) = b) = [B( ��; ��)]−1
∫ a=(a+b)

0
v ��−1(1− v) ��−1 dv:
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Remark 1. (1) It is also possible to calculate the quantities F and G from the
Ray–Knight theorems by manipulations involving squares of Bessel processes.
(2) Using the corollary to �nd the behaviour of P(X (�(a; b))=b) as a↓0 we deduce

that

lim
a↓0

E(e−�Tb |X (�(a; b)) = b) =
(

�∗b
sinh �∗b

)��
:

Thus, informally, we see that when we ‘condition X to stay positive’, the parameter �
disappears.

The next result is in the same vein as Theorem 5. We �rst state it for singly perturbed
Brownian motion, in which case it is implicit in the proof of Theorem 4 of Doney
(1998).

Proposition 2 (Doney, 1998). When � = 0 we have; for −a¡z¡b;

P(�¿V�; X (V�) ∈ dz)

=2 ���(sinh �∗a) �� sinh(a+ z)�∗
∫ b

z+

du
(sinh (a+ y)�∗) ��+1

dz:

The computation of the same quantity for doubly perturbed Brownian motion requires
the following lemma, which is an extension of the exit formula in the excursion theory
for the reected Brownian motion.
First, denote by G(1) the set of jump times of (�(1)s ), that is

G(1):= {s¿ 0: �(1)s− 6= �(1)s }

and for each s ∈ G(1), let e(1)s be the excursion of the process W (1) which starts at �(1)s−:

e(1)s := {W (1)(�(1)s− + u); 06u6�
(1)
s − �(1)s−}:

Let now U be the set of positive functions ! with �nite lifetime �(!) such that !(0)=0
and !(�(!)) = 0. With U standing for the Borel �-�eld on the space U , we have:

Lemma 4. Let K be a positive (Ft)-predictable process and �∈U be such that
n(�)¡∞; where n is the excursion measure of the reected Brownian motion. Then

E


∑
s∈G(1)

K(�(1)s−)1{e(1)s ∈�}




=
∫ ∞

0

∫ ∞

0
E(K(�(1)s ) |M (1)(�(1)s ) = y)n

y(�)P(M (1)(�(1)s ) ∈ dy) ds;

where ny(�) = n(�; �¡Ty) + n(Ty ¡�)Q(y)0 (�); Q
(y)
0 is the law of the canonical

process under Q(y) killed when it hits 0; and Q(y) is de�ned in Lemma 2.

Proof. For every �¿ 0 and i¿1, we put: d0� := 0; T
i
� := inf{s¿di−1� : W (1)

s = �} and
di� := inf{s¿T i� ; W (1)

s =0}. Letting also gi� be the last zero of W (1) before the time T i� ,
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that is: gi� := sup{s6T i� : W (1)
s = 0}, we de�ne the excursion straddling the time T i� as

follows:

e�; i:={W (1)
gi�+u

; 06u6di� − gi�}:
Then, from monotone convergence we have

E


 ∑
s∈G(1)

K(�(1)s−)1{e(1)s ∈�}


= lim

�→0
E

(∑
i¿1

K(gi�)1{e�; i∈�}

)
:

Now, putting �e�; i := sups6di�−gi� e
�; i
s , we are going to compute separately the limit of the

two terms in the RHS of the following identity:

E

(∑
i¿1

K(gi�)1{e�; i∈�}

)

=E

(∑
i¿1

K(gi�)1{e�; i∈�; �e �; i6M (1)(T i� )}

)
+ E

(∑
i¿1

K(gi�)1{e�; i∈�; �e �; i¿M (1)(T i� )}

)
:

(4.7)

First, by conditioning on M (1)(T i�), we have

E

(∑
i¿1

K(gi�)1{e�; i∈�; �e �; i6M (1)(T i� )}

)

=
∑
i¿1

∫ ∞

�
E(K(gi�)1{e�; i∈�; �e �; i6y} |M (1)(T i�) = y)P(M

(1)(T i�) ∈ dy):

Note that conditionally on { �e�; i6M (1)(T i�)}, the excursion e�; i is not perturbed and thus
it behaves like an excursion of the reected Brownian motion. By splitting the excursion
e�; i at time T i� and then by applying the strong Markov property of (W

(1); M (1)) at this
time (see Theorem 2), we can see that the previous term has the same limit, as � goes
to 0, as∫ ∞

�

1
�
R�(�; �6Ty)

∑
i¿1

�E(K(gi�) |M (1)(T i�) = y)P(M (T
i
�) ∈ dy);

where R� is the law of a reected Brownian motion starting at �. Now, by the semi-
martingale local time approximation by the number of downcrossings (see Revuz and
Yor, 1994, p. 212), we have

lim
�→0

∑
i¿1

�E(K(gi�) |M (1)(T i�) = y)P(M (T
i
�) ∈ dy)

=E
(∫ ∞

t=0
K(L(1)t ) |M (1)

t = y)P(M (1)
t ∈ dy) dL(1)t

)
and since the limit in � of R�=� is precisely n, (see Revuz and Yor, 1994, p. 456) then,
when � goes to 0, the �rst term of the RHS of (4.7) converges to∫ ∞

0
n(�; �6Ty)

∫ ∞

0
E(K(�s) |M (1)(�(1)s ) = y)P(M

(1)(�(1)s ) ∈ dy) ds:
We are going to compute the limit of the second term of the RHS of (4.7) by applying
the same arguments but �rst, notice that between the times T i� and Ty; the process
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(W (1); Q(�)) behaves like the process (W (1); R�), and after the time Ty, it behaves like
(W (1); Q(y)). So, by the strong Markov property of (W (1); M (1)) applied at T i� , the
expression

E

(∑
i¿1

K(gi�)1{e�; i∈�; �e �; i¿M (1)(T i� )}

)

=
∑
i¿1

∫ ∞

y=0
E(K(gi�)1{e�; i∈�; �e �; i¿y} |M (1)(T i�) = y)P(M

(1)(T i�) ∈ dy)

has the same limit, as � goes to 0, as∑
i¿1

∫ ∞

�
E(K(gi�) |M (1)(T i�) = y)R�(Ty ¡�)Q(y)0 (�)Q(M

(1)(T i�) ∈ dy):

By arguments we have already used, when � goes to 0, the above term converges to∫ ∞

0

∫ ∞

0
E(K(�(1)s ) |M (1)(�(1)s ) = y)Q

(y)
0 (�)n(Ty ¡�)Q(y)(M (1)(�(1)s ) ∈ dy) ds

which completes the demonstration.

The extension of Proposition 2 to doubly perturbed Brownian motion is as follows:

Proposition 3. For 0¡z¡b;

P(�¿V�; X (V�) ∈ dz)

=dz
(�∗)3�( ��+ �� + 1)

�( ��)�( ��)

∫ a

x=0

∫ b

y=0

f(z; b; y)(sinh y�∗) ��(sinh x�∗) ��

(sinh(x + y)�∗) ��+ ��+1
dx dy;

where

f(z; b; y) =
sinh(y − z)�∗
sinh y�∗

1{y¿z} +
sinh z�∗

(sinh y�∗)�

∫ b

z∨y

���∗ d!
(sinh!�∗) ��+1

:

Remark 2. To get the result for z ∈ (−a; 0), it su�ces to consider −X .

Proof. Call es the excursion away from 0 of X which starts from �s−, that is

es := {X�s−+u; 06u6�s − �s−}:
Denote by G the set

G := {s¿ 0: �s− 6= �s}:
Then we can write ��(dz) :=P(�¿V�; X (V�) ∈ dz) in terms of excursions away
from zero of X as

��(dz) = E

(∑
s∈G

1{�(1)s−+�(2)s−¡V (�);M (1)(�(1)s−)¡b;M
(2)(�(2)s−)¡a;es∈
+}

)
;

where 
+ = {e∈U : �(1)s− + �(2)s−¡�(e)¡V (�) + �(1)s− + �
(2)
s−; e(V (�) − �(1)s− − �(2)s−)∈dz;

�e(V (�)− �(1)s− − �(2)s−)¡b}. Since only the excursions away from 0 of X+ in the above
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term are involved, then by conditioning on W (2), we can apply Lemma 4 and get

��(dz) =
∫ ∞

s=0

∫ a

x=0

∫ b

y=0
g(�)y (�; s)g

(�)
x (�; s)n

y(�(e)¿V (�); e(V (�)) ∈ dz;

�e(V (�))¡b) dx dy ds;

where

g(�)y (�; s) dy := P(�
(1)
s ¡V (�); M (1)(�(1)s ) ∈ dy);

g(�)x (�; s) dx := P(�
(2)
s ¡V (�); M (2)(�(2)s ) ∈ dx)

can be read o� from G(�)y (�; s) and G
(�)
x (�; s), which have been computed in the proof

of Theorem 5. An integration with respect to s gives

��(dz) =
�∗

2
�( ��+ �� + 1)

�( ��)�( ��)

×
∫ a

x=0

∫ b

y=0

(sinh y�∗) ��(sinh x�∗) ��

(sinh(x + y)�∗) ��+ ��+1
ny(�(e)¿V (�); e(V (�)) ∈ dz;

× �e(V (�))¡b) dx dy:

Applying Lemma 4, we get

ny(�(e)¿V (�); e(V (�)) ∈ dz; �e(V (�))¡b)

=2

(
1{y¿z}

2� sinh (y − z)�∗
sinh y�∗

+
�∗

sinh y�∗

∫ b

!=z∨y
Q(y)(T0¿V (�);

X (v(�)) ∈ dz; �X (V (�)) ∈ d!
)
:

To complete the proof the following identity remains to be obtained:

Q(y)(T0¿V (�); X (V (�)) ∈ dz; �X (V (�)) ∈ d!) = ���∗sinh z�∗d!
(sinh!�∗) ��+1

dz;

which follows from Proposition 2.
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