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1. INTRODUCTION

Let (B, t > 0) be a real Brownian motion starting from 0. Fix
B < 1, and consider the doubly perturbed Brownian moti&n, ¢ > 0)
(DPBM in short) defined as the (pathwise unique) solution of the
following equation:

X,ZB,+(XM,—,BI,, (l.l)

with Xg =0, M, d:efsupbgsg,Xs, andl, d=EfSU|Q)<S<t(—XS). Le Gall [16]

showed that the DPBM can be obtained as a limit process from a “weak”
polymers model of Norris, Rogers and Williams [19]. A time changed
version of (1.1), the so-called perturbed reflecting equation, appears
also in the studies of the asymptotics of planar Brownian motion (cf.
Le Gall and Yor [17]). The DPBM also arises as the scaling limit of
some self-interacting random walks (see Téth [25] and [26]). Recently,
Eq. (1.1) has attracted much interest from several directions: see, e.g.,
Petit's thesis [21] and Yor [29] for motivations from Lévy’s arc sine
laws; Le Gall and Yor [17], Carmona et al. [2], Davis [9,10], Perman and
Werner [20], Chaumont and Doney [4] for the existence and unicity of
the solutions of (1.1); Carmona et al. [2,3], Werner [28], Chaumont and
Doney [5], Doney [11] for related Ray—Knight theorems and calculations
of laws; Shi and Werner [24] for the almost sure study of occupation time;
Doney et al. [12] for the generalizations to perturbed Bessel processes.
Let us mention that only in the cage= 0 (or similarly for« = 0), has

the process( an explicit form in term of Brownian functionals, i.e.:

X, =B+ Y sup B, forp=0, (1.2)

— 0 ogs <t

which, according to Lévy's identity in law for syp, B, and the
Brownian local timeL, at 0, is equivalent to the processB;| + uL;
with © = 1/(1— «) (cf. Petit [21], Yor [29] foru-process). We also point
out thata, 8 < 1 is the necessary and sufficient condition for Eg. (1.1) to
have a (pathwise) unigue solution (cf. [4]).

In this paper, we study the asymptotic behaviors of the extrendg .of
First, we state an Efd—Feller—Kolmogorov—Petrowsky (EFKP) type
result:
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THEOREM 1.1. — Recall(1.1). Let f > 0 be a nondecreasing func-
tion; we have

IP( sup X, >/t f(1), i.o.)

0<s <t

~{3e [ ool CGIO) 22 aa

where, here and in the sequel, “i.0” means “infinitely often” as the
relevant index goes to infinity. Consequently, we have

i X, 1 14
Iﬂijp\/ﬂw_l—a’ a.s. (1.4)
Remark1.1.— Theorem 1.1 is not surprising. Indeed, intuitively,

the extraordinarily large values ok, should only depend on the
perturbation at the maxima &f, and so the upper limits of, with «, 8-
double perturbations should agree with those ofdksmply perturbed
Brownian motion given by (1.2). We also point out that in certain cases
(for instance, 0< a, 8 < 1), the LIL (1.4) can be derived from that of
Brownian motion and Skorokhod’s reflection lemma.

The main results of this paper are the following two forthcoming
theorems. The first one is a Hirsch-type integral test for the lower limits
of sup¢, X

THEOREM 1.2. — Recall(1.1). Let f > 0 be a nondecreasing func-
tion; we have
iimint 22 sup x, —{0 ,
1=00 I ogs<e

In particular, we have almost surely

é/tf(t)d B) { - (1.9)

(logr)TF ™ 0, ife<O
N { ) ~X 1 (16)

liminf sup X, = .
t—00 \/Z OSSQI s o0, if ¢ > 0.

It is noteworthy that the above integral test does not depend, og.,
the small values of syp, X, only involves the perturbation at minima
of X.

Remark 1.2. — Denoting byX*# the solution of (1.1), it follows from

the Brownian symmetry that®# 2 _ x#-«_Then, the above results give
corresponding versions fer infoc,<, X, by interchangingr andpg.



222 L. CHAUMONT ET AL. / Ann. Inst. Henri Poincaré 36 (2000) 219-249

The lower functions of suyp ., | X;| are characterized as follows:

THEOREM 1.3. — Recall (1.1). Let f > 0 be a non decreasing
function we have

IP’( sup | X;| < i 0.)

, .
0<s <t f@

:{2(1}7%“02(1—0!—;3) exp<_@> {200 (1.7)

8 o0

Consequently, the following Chung-type LIL holds

log logz\ /2
Iiminf< 9’9 > sup | X,| :l, a.s. (1.8)
1—00 t 0<s<t V8

Although we don't state it explicitly, all the above results admit
corresponding versions agoes to 0.

Let us point out that among these, Theorem 1.3 is more intrinsic, even
though DPBM and a standard Brownian motion enjoy the same LIL. In
a sense, this Chung-type integral test shows how the two perturbations at
maximum and at minimum cancel or strengthen themselves.

Taking e = 8 = 0 in Theorems 1.1-1.3, we obtain respectively the
usual EFKP, Hirsch and Chung type integral tests for Brownian motion.
We refer to Csor§ and Révész [8], and Révész [23] for detailed
discussions of the almost sure behaviors of Brownian motion and random
walk, and to Csaki [6] for the generalized Chung and Hirsch-type
result.

This paper is organized as follows: In Section 2, we will state a
Ray—Knight theorem for a general DPBM at its first hitting time, and
give an estimate for the density functions of some infinitely divisible
laws. The behaviors of tail probabilities are given in Section 3, which
imply immediately the convergence parts of our integral tests, whereas
the divergence parts need some uniform estimates which are given in
Section 4. Finally, all theorems are proven in Section 5.

Throughout this papery < 1, 8 < 1 will be considered as two uni-
versal constants. We writg(x) ~ g(x) asx — xg if lim ., f(x)/g(x)
= 1. Unless stated otherwise, the constaiits= C;(a, 8), 1 <i < 25
only depend omx and 3.
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2. PRELIMINARIES

Firstly, let us recall a Ray—Knight type theorem for the DPBM with
non zero initial values for its maximum and minimum. Fig > 0 and
iop > 0. Consider the equation

{Yi=Borali) —mo) =B =), 10 )
Yo=0,

with x* £'x v 0, MY d:“sup)@gt Y, v 0, andrf dzefsupb@gt(—n) v 0.
We denote by{Ly(z, x),t > 0,x € R} the family of local times of the
continuous semimartingalg defined by the occupation time formula.
Write

Ty () Einf(r >0: ¥, > b}, b>0. (2.2)
Throughout this paper, we write
a=1l—-a>0, (2.3)
B=1—p>0, (2.4)
BESQ = a process having the same law as the square of Bessel
processes of dimensidnstarting fromr > 0, (2.5)

see [22, Chapter XI] for detailed studies on Bessel processes.

PROPOSITION 2.1. — Fix b > 0. The proces$Ly (Ty (b), b—1),t > 0}
has the same law a&Z (r A ¢), ¢ > 0), whereZ is the unique solution of

t
Z,=2/¢Z_sd3x
0

t
+ / (201 i0<s<v-mo) + 2L(p-moy+<s<v) T 2BL(s>b1ip)) A,
0

and ¢ def inf{t > b: Z, = 0}. In words, the proces$Ly(Ty(b),b —

t), t > 0} is an inhomogeneous Markov process which is a BﬁSI@
[0, (b — mg)*t], a BESG on ((b — mg)™, b], a BES® on (b, b + iy] and
a BESéﬂ on[b + i, 00), absorbed at its first zero after tinie

Remark2.2. — The case ohg = ig = 0 of the above proposition has
been stated in Carmona, Petit and Yor [3, Proposition 3.4]. See also their
Ray—Knight theorem at the inverse of local time at 0 [3, Theorem 3.3].
For the casgg =0 (i.e., theu-process) see [2, Theorem 3.2].
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Proof of Propositior2.1. — This result, probably not new, may have al-
ready been obtained by the expertsueprocess or perturbed Brownian
motion. Its proof can be achieved by a method of studying the filtra-
tion generated by the excursionslotbelow levels. This method, devel-
oped by McGill [18] and Jeulin [14] for the classical Ray—Knight the-
orems for Brownian local times, works in fact with more general dif-
fusion processes or semimartingales (cf. [19]), and also has been used
in [3] to obtain their Ray—Knight type results. Here, for the sake of
completeness, we sketch the main steps, and the interested reader is re-
ferred to [3,14,18,19]. Applying Tanaka'’s formula to (2.1) gives that for
x €R,

t
(=0 =0+ [ Lo dB+a(M) —movx)"
0

1
—BUIY A (=x) —ig) "+ 5 Lr(t.).
DefineZ, OI:‘EfLY(TY(b), b—y)fory>0andlett =inf{r > b: Z, =0}.
Observing: =b + ITYN,), we have fory >0

Ty (b)
Z, =2 / L,-py dB, + 2y A b — 20y A (b — mo)*
0
+28(yAg — (b+ip)".

It suffices to show that € [0, 00) — [ 1(y,._,) d B is a continuous
martingale with respect to the natural filtratio”, r > 0) of Z, with
increasing process— [; Z, dx. The key point is to show that for every
H e L?(F?), there exists a process,) predictable with respect to the
filtration (o (B;, s <1t), t > 0) such that

Ty (b)
H=EH)+ / hsl(YS>b7x)st~
0

To prove this representation, observe that the time-change arguments
of [14,18,19] work in the present case once we use the facts that Eq. (2.1)
has a unique solution adapted to the natural filtration of the Brownian
motion B, and that7y (b) is also a stopping time with respect to the
filtration (o (B,, s <1t), t > 0). The details are omitted. O
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We shall make use of the following

LEMMA 2.3.- Recall (2.3)42.5). Let V® be a process with law
BESQ. For § > 0, denote byZ(8) the gamma distribution of® . with
densityx®~te=*/I'(6). We have fow, ¢, A, u > O that

Hyp 2
e ylaw T
O/ds VP (s) = 8252 (2.6)
2 L
Eexp(-uvg”(t) - % / ds Vé%))
0
2 —5/2
= (cosr(xt) +— Sinh()»t)) , (2.7)

2 o
E(exp(—% / ds vr<°>(s)> 1<Ho<l,)> - exp(—%kcoth(h:)), (2.8)
0

where in(2.6)and(2.8), Hy denotes the respective first hitting time of the
processe ?» and V©. Furthermore, we have for akt, r, r > 0,

Ho _ B L2\ P2

P(/ds Vr(zﬂ)(s)>x> <8 P2(r@a+4/2) (;> , (2.9)
0
I’. 2

P(/ds vc§2&>(s)>x> <2&/2exp<—%>, (2.10)
0

a/T T2
E(VO®)’ <ve@d+ )P vl (2.12)

Proof. —By scaling, it suffices to treat the case= 1 in Lemma 2.3.
See Yor [29, p. 16] for (2.7). To see (2.6), by Bessel time reversal,

f ) 23+1/2 2,2
P(/ds ngQ)(s)q) ~ ﬁexp( T ) L0, (211)
r r
0

Ly

Hy
/ ds Vi) ()2 / Vi (s),
0 0

with £1 = supz > 0: V"% (1) < 1} being the last exit time at 1 of the
transient Bessel square procégs >, From this, (2.6) follows from
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Yor [29, p. 119]. To prove (2.8), again by time reversal we have

(VO (Hy —5),0< s < Hot 2 {V{¥(5),0< s < L1},

with £1 £ supls > 0: V{¥(s) < 1}. Using the density function of;
evaluated by Getoor [13] and conditioning Sngive that the expectation
term of (2.8) equals

a2 F
=E<exp<—§ / ds Vé‘”(S)) 1<cl<u)>
0
_[p Moo
= (L1 edx)E|exp Y dsVy7(s) || £
0 0
_ MP S
= (Lyedx)E|exp 5 ds Vo (s)
O 0
2

_ jjz ex p(—%) <Sin)lt;kx)) xp< 1 (1—ax COth(kx)))
_ exp<— A coth(iu) ) ,

:x]

VP (x) = 1}

2

where the third equality is due to [30, p. 53], and the fourth to [22,
p. 443]. (2.8) is thus proved. (2.9) follows immediately from (2.6) by
bounding the density o£(8/2) by x#/-1/T'(8/2). To obtain (2.10),
use of analytical continuation yields

2

1
Eexp(A /a’s v52&>(s>> = (cos(v21)) ™%, 0<i< %,
0

implying (2.10) by Chebychev’s inequality at= =2/32. Takeu =0
in (2.7). By inverting the Laplace transform, we get the density function

1
P ( / ds Vi™(s) e dt) /dt
0

_22“< D'Tr+@n+&) e
S0 T@r(n+1)v2 2mt3

, t>0,



L. CHAUMONT ET AL. / Ann. Inst. Henri Poincaré 36 (2000) 219-249 227

implying (2.11). Finally, we use the following Laplace transform for the
BESQ processV @ (cf. [22, Chapter XI])

Eexp(—1V% (1) = exp<_ 1+ 2u> ’

which implies

Eexp(AV @ (1)) = ( r)x—.
exp(AV, 7 (1)) = exp T o) <%

Letk 214 [B] the smallest integer greater th&nTakingx = 1/4(r V1)
in the above transform and using the elementary relatfoq k! €1
gives
© (7)) © (1)< B/ k Blky —P
E(VO )" < EWVO®))" < &Y e,
gives (2.12) by means @f <k* < (1+ B)¢. O

The following result shows the relation between the asymptotic
behaviour of the density function of an infinitely divisible distribution
and that of its Lévy measure in circumstances that do not seem to have
been considered before, and may be of independent interest.

LEMMA 2.4. - Let & be an infinitely divisible random variable on
[0, o0) whose Lévy measure has density funciign) such that

e¢]

Ee™*® = exp(— / (1—e)m(x) dx> . (2.13)

0

Assume furthermore thasug,_,_..x7(x) < oo and there exist two
constants: > 0 and p > 0 such that

le x> 0.

w(x)~ px~
ThenZ has at most a Dirac mass 8tand
P(E edn)/dt =t"" @) e ™, >0, (2.14)

with some functiori(¢) which is slowly varying ato.

Proof of Lemma2.4. —First, let us show thaE has at most a Dirac
mass at 0. In fact, eithef;” 7 (x) dx = oo, and Tucker [27] says that
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in this case the distribution oE is absolutely continuous; on gef

Jo 7w (x)dx < oo, in which caseZ can be realized as a compound

Poisson variable, i.e& law E1+&E+---+ &y, where(§, i=1,2,..)
are i.i.d., with common distributio® (¢, € dx)/dx =7 (x)/n, x > 0, and
(&); = 1 are independent a¥, which has the Poisson distribution of
parameter. ThereforeP(& = 0) = e ". In terms of the density function

(x)/n of &, itis easy to obtain tha® has a density function of®, co).

To prove (2.14), writef(¢) def P(& e dt)/dt for t > 0 and« def

P(Z = 0) > 0. Differentiating (2.13) with respect togives

@

E(Ee %) =E(eF) / e xn(x)dx, A>0,
0

which implies in terms off and« that
tf(t) =Ktn(t)+/f(t —s)sm(s)ds, t>0.
0
Define f*(r) OI:e'(e"’f(t), andr*(¢) d:efe"’n(t), so that
tf*(t) = ktm*(t) + /t.f*(t —s)st*(s)ds, t>0. (2.15)
0

Sincesm*(s) — p ass — oo, it is easy to show

- Jo f¥(t —s)sm*(s)ds
—00 fé f*(s)ds -

(2.16)

In fact, notice thaif,~ f*(r) dt = co (otherwise, applying dominated con-
vergence to (2.15), we would have thét(t) ~ (kp + p [y~ f*(s)ds)/1,
as t — oo, leading to a contradiction). Since supsm*(s) =

K < o0, (2.15) yields

e < KKK
fra<s +to/f(s) 5,
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and therefore for any fixed > 0, sincefoA st*(s)ds < 0o, we have

A ‘
/f*(t—s)sn*(s)ds:O(/f*(s)ds), t — 00,
0 0

implying (2.16) in view of (2.15). Combining (2.15) and (2.16), we have

O g
oo [T rr(syds L

so that, according to a result of Karamata (cf. [1, p. 3P])¢) = t*~14(¢)
which completes the proof singg(r) = e “ f*(¢). O

3. TAILS

Consider the DPBMX of (1.1) and define

def{ inf{t > 0: X, >a}, ifa>0, (3.1)

Ix(@) = inf{r >0: X; <a}, ifa<DO.

Recall (2.3) and (2.4). The explicit form of the density functiorfpfl)
has been given in [3], and this yields
612

P(Tx(1) < x) ~ C1x/? exp(—g>, x — 0, (3.2)

with C, = 26+%2I" (@ + B)/aT'(3 — o — B/2)T(B/2). The goal of this
section is to get the behavior of the tail probabilitiesTg{1) and of the
exittime Ty (—a) A Tx(b) from the interval[—a, b].

LEMMA 3.1. - Recall(2.3)(2.4) and (3.1). We have
P(Tx(r) > 1) ~ Cat/r2) "2, 1/r2 = o0,

whereC, = 23MP/21 (@ 4+ B) /(BT (B/2)T (@)).

Remark3.2. — The Laplace transform dfy(r) is given explicitly
in [3], from which it is also possible to get the above tail behaviour by
using a Tauberian theorem (cf. [1, p. 333, Theorem 8.1.6]). Intuitively,
the reason why the asymptotic behaviour of the tail of the distribution of
Tx(r) depends o andnot « is that if we writeTy (r) = AT (Tx(r)) +
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A~ (Tx(r)), whereA*/~(¢) denotes the time spent positive/negativeXoy
up to timet, then it isA—(Tx(r)), which obviously depends only gf,
which dominates.

Proof. —By scaling, we need only consider= 1. Applying Proposi-
tion 2.1 withmg = ig = 0 yields

1 Hop

P(Tx(1) > 1) :IP’(/Z(S) ds +/V(s) ds > t>, (3.3)
0

0

where (Z(s),0<s < 1) is a BES@& and (V(s),s > 0) denotes a
BES@” starting fromZ (1), Ho = inf{r > 0: V(¢) = 0}. It follows that

Hp
IP’( V(s)ds > t)
/

1

Hp
<P /V(s)ds>z—ﬁ>+P</Z(s)ds>ﬁ> (3.4)
0

0
Ho
< P(/ V(s)ds >t — ﬁ) 282 g i/32, (3.5)
0

by applying (2.10) taZ. Using (2.6), we have

? 28 FPRZ(1)F -

P(/V(s)ds > t) ~ T B2 szﬂ/z, t — 00,
) BT(B/2)

which yields the desired estimate in view of (3.4) and (3.51

The main result of this section is the following tail behaviour of
P(Tx(—a) A Tx (b) > t), for fixeda, b > 0.

PropPoOsITION 3.3. — Recall(2.3), (2.4) and (3.1). Fix a,b > 0. We
have

2
P(Tx(—a) > Tx(b) > t) ~ Cat ™~ F exp(—m t), t = 00,

with C3 = 27483 /(@) (B)) (a + b)2* P (sinzra/(a + b))* 1.



L. CHAUMONT ET AL. / Ann. Inst. Henri Poincaré 36 (2000) 219-249 231

By exchanginga and g in the above result, we obtain the tail of
P(Tx(b) > Tx(—a) > t) and therefore
2

P(T,a ATy, > l) ~ 2C3tia7ﬂ exp(—mt
a

), t—>o0. (3.6)

Our proof of Proposition 3.3 relies on the following Laplace transform
obtained in [5]: fora > 0,

— 270
E(e 2 X()l(Tx(b)<Tx(—a)))

_ '@+ pB) i I A(sinhab)? (sinhiu)é—1
CT@re ) (SiNhA(b + u))a+h

(3.7)

It seems difficult to directly invert the above Laplace transform. We shall
write (3.7) in an equivalent form. For > 0 and 0< a; < a,, denote by
A, (a1, ap) ar.v. having the following Laplace transform

arsinh(aq)\” .
)\’2 <7S|nr’()"a )) 5 |f a]_ > 0,
JEexp(-E A, (ay, a2)> {4 iy & 2> 0.
2 .
e far=0
(sinh(kaz)) o Ta=w
(3.8)

Write A, (a2) = A, (0, ay) for brevity. Observe the following monotonic-
ity and scaling property oft, variables:

Ay (a1, az) Iﬂva%Ay(al/az, 1), 0<ay <ao, (3.9)
P(A,(a1,a) > 1) < P(A,(az, a2) > 1), 0<az<ai<ap t>0.
(3.10)

(A quick way to obtain (3.10) is to notice that, (as, az) law A, (a1, a2) +
A, (az, a1), the sum of two independent variables). We can rewrite the
RHS of (3.7) as

T'@+f) "du u=pP
F@TB) ) (b+u*s
2
><Eexp(—%(Al(u)—i-A&(u,b—i—u)—i—AE(b,b—i—u))),

where the three random variables are assumed to be mutually indepen-
dent. This implies that
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P(Tx(b) > 1, Tx(b) < Tx(—(l))

- = a —apf
_T@+h) [, v s oo, (3.11)
C'(@)I'(B) J (b + u)a+p

with £, €' A1) + Ag(u, b+ u) + Az (b, b+ u).

Remark3.4. — Since(Tx (b) < Tx(—a)) = (Iry») < a), we get the
density function oflr,, by differentiating (3.11) with respect to.
Furthermore, (3.11) tells us that conditionally (G ;) = u), Tx(b) =
Ay(u)+Ag(u, b+u)+ Az(b, b+u) is a sum of three independent hitting
times which correspond respectively BES3) (the three-dimensional
Bessel process), BES3, ) (the «-perturbed three-dimensional Bessel
process) and tBES3, ). It remains an open question to find a path
transformation explaining this decomposition. For studies on perturbed
Bessel processes, we refer to [12].

LEMMA 3.5.—Recall(3.8). Fix0<z1,22,z3< 1. Let® = A1(z1) +
Az(z2, 1) + Ap(z3, 1), where the three-random variables are assumed
to be independent. We have
21 Sin&(Zﬂ_) Si_anZsﬂ)ﬂH&Jrﬂ AT <

(@ + B)z3z4 sin(zan)

where fori = 1, 2, 3, the above constant should be understood as its limit
whenz; — 0if z; =0.

P(® edt)/dt ~

t — 00,

Proof. —Observe that the infinitely divisible random varial#e has
a continuous density functiorf(z) on (0, c0), and its Lévy measure
7 (x)dx is given by

2,2 22

1 e 22 -5
”(x):;Ze 1 +;Z<e’7)‘—e #2 )

k>1 k=1
k2

IB — ”2)( 222
+;Z<e 2 ¥ _ @ “3

k=1

with the convention 10 = oco. Applying Lemma 2.4 withc = w22,
p=a+ B> 0yields

_ 72
fO) =Y e =, 1>0,
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with a function£(¢) which is slowly varying ato. It remains to show that
£(¢) is equivalent to the desired constant as oco. To this end, using the
above expression for the density functigir) and writing the (positive)
Laplace transform ob at ”—22 — ¢ for a smalle (by taking the limit in
the following expression as the appropriate index goes ta{Q ib, or z3
equals to 0), use of (3.8) gives

o0

o >
/ ety dt = (67 799)
0

Gaars)Cen )

sin(z1y/2(%& —¢))

(Sin(zg 2(2 —e))>ﬁ
X

3S|n\/2(n77—5)
A Sirf (zom) SlrfS(Z37T)771+&+B o—d+P

— e—0,
2575 sin(zym)
which implies by a Tauberian theorem (cf. [1, p. 43, Theorem 1.7.6]) that

1 zlsirﬁ(zzn)sirﬁ(zgn)nﬁﬂﬁ

L(t) ~ ——= ’
'+ B) 2525 sin(zym)

t — 00,

as desired. O

Proof of Proposition3.3. —We are going to show that

72
lim SupP(Tx (—a) A Tx (b) > t)t**F e w2’ <Cs  (3.12)

1—>00
72
Iimiorgf P(Tx(—a) A Tx(b) > 1)t* P e 2ai?’ > Cy. (3.13)
First, let us show (3.12). Fix & ¢ < a. We rewrite (3.11) as
P(Tx(b) > t; Tx(b) < Tx(—a))

- T(@T(B) (0/ —i_a_/‘9 )du (b + u)i+P P(X, >1),

= L(t) + (1), (3.14)
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with the obvious meaning fo¥; and I,. Recall thatX, = A1(u) +
Az(u,b + u) + Ag(b,b + b + u) is the sum of three independent
random variables, and the variables have the properties (3.8)—(3.10).
Foru < a — ¢, using (3.10), (3.9) and applying Lemma 3.5 with=
(a—e)/(b+a—e¢),zo0=1z3=0we see that

P(Z, > 1) <P(Ar(a — &) + Az(b+a —e)+ Az(b+a—e) > 1)

a—¢& 1t
=P A ——— A; (D) +4;1) > ———
( 1<b+a—8>+ b+ ’3()>(b+a—e)2>
t a+p-1 ___%
<K|——— e Wta—o2 > b)?/2,
((b—i-a—S)Z) (a+b)%/
for some constank = K (¢, a, b) > 0. It follows that
__x%
limsupl,(0)1® T e 2wn?’ = Q. (3.15)

[—>00

It remains to estimatd,(¢). Foru € [a — ¢, a], using (3.9) and (3.10)
yields

P(X, >1)

P45 )+ 4 () () = o)
I el V7 “\b+u’ Ab+u ™) btu?
)

a—¢ b
<Pl A Ag| —, 1)+ 451 —,1
< 1<b—i-a + <b+a—8 )+ ﬁ<b+a >
t
— 3.16
(b+u)2> (3.16)
a+p—1 a2 , X
~c4<e><(b+u>z> e W, 1/(b+a)’>o0  (317)

where the last equivalence is obtained by applying Lemma 3.5 with
z1=a/(a+b),zo=(a—¢)/(a+b—¢),andzz=b/(b + a). Itis easy
to see

IimOC4(e) =2((a+b)z sin(ra/(a + b)))(ﬂ'g_l
x a¥™ b~ ) T(a + ). (3.18)

Applying (3.16)—(3.18) toly(r) of (3.14), some lines of elementary
calculations imply
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2
. ——r
limsupl(1)1* ™ e 2?2

27 @+B-3 ma \*H1
e b) (14 1)),

wheren(e) — 0 ase — 0, which, in view of (3.15), gives the desired
upper bound (3.12) by letting— 0. For the lower bound, we use in lieu
of (3.16) the following observation that fare [a — ¢, a],

a—e¢ a
P, >t) 2Pl A ———— Ayl —, 1
(Zu>1) ( 1<b+a—8>+ <b+a )

b t
Az ———,1  —
+ ﬂ(b—l—a—s’ >>(b+u)2>’
and the lower bound (3.13) follows exactly in the same way from (3.14)
and Lemma 3.5. O

(a + b)*@th (sin
a

We also need to bound uniformly the probabilRyTy(—a) > Tx(b)
>t)fora,b>0.

LEMMA 3.6. — Recall(2.3), (2.4) and (3.1). There exists a constant
Cs = Cs(«, B) > 0 only depending om, 8 such that for all0 < b < a
andr > 0,

2
P(Tx(—a) > Tx(b) > 1) < Cs eXp<_8(aﬂ7—|—tb)2)' (3.19)

Moreover, for allb < a < 2b andr > (a + b)?, we have

2

P(Tx(— Ty (b) > 1) < Csh?@tP=2=F ex (—L
(X( a) > X()>) 5 P 2(a + b)?

). (3.20)
Proof. —It follows from (3.7) that for all O< A < 7 /(a + b),

22
%5 b
E<ez e )1(Tx(b)<7x(*a)))

_T@+p) [ r(sinib)fsinaun?
- T@r ) " (SiNA(b 4 u))@+F

(3.21)

Taking A = r/2(a + b) in (3.21) and using the elementary relation that
x = sinx > 2x/m for 0 < x < /2 yields that the RHS of (3.21) is
bounded by
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a—-1
CG(O[ ﬁ)/dum

a/b L1 % L1
:C/de<C/de,
B R Y R R T

which, by applying Chebychev’s inequality to (3.21), implies (3.19).
Now, we consider the cage< a < 24. Recall (3.8)—(3.11). For &
u<a,u/(b+u)<a/(b+a)<2/3.Using (3.9)—(3.10) yields

P(X, >1)

P(a(i) 2o )+ () = )
= & 9 B 9 >
\b+u b+u P\b+tu (b + u)2

2
<P(a(3) + 4a + 2,0 >

t
(b+u)2>

¢ a+p-1 7T2l )
<) oo ggrap) e

where the last inequality is obtained by applying Lemma 3.5 with
2/3,z> = z3 = 1. Using the above estimate in (3.11), (3.20) follows from
some elementary computations (with possibly a larger congignt O

4. MAIN ESTIMATES

This section gives the main estimates needed to prove Theorems 1.1—
1.3. We consider a special case of Eq. (2.1) with= 0 andip = v,

+
{Y, B +aM) —p(I —v)", (4.1)
Yo=0,

with some constant > 0 being given. Write throughout this section

Ty(x) Inf{t >0:Y,=x}, xekR.

LEMMA 4.1. — Recall (2.3)—«(2.4) There exists a constanfg =
Cg(a, B) > 0 only depending o and 8 such that for allr, ¢t > 0

~-2.2
P(Ty(r) <1) <C8$exp<—a2: > (4.2)

2

P(Ty(r) >1) < Cgexp< 962

) + Cg L Csov P2, (a.3)



L. CHAUMONT ET AL. / Ann. Inst. Henri Poincaré 36 (2000) 219-249 237

Proof. —Applying Proposition 2.1 witth = r, mg =0, ig = v yields
r v Hop
Ty(r) 2 / ds Zs + / ds Uy + / ds V,, (4.4)
0 0 0

where(Z,, 0< s <r)is aBESG" (cf. (2.5)),(U,,0< s < v) isaBESQ

starting fromz,, and(V;, s > 0) is aBES@” starting fromU,, > 0, with

Hy d_Eflnf{t >0: V, =0} (so Hy=0 if U, =0). By applying (2.11) to

Ve = 7, (4.2) follows from the fact thab(Ty (r) < 1) < P(fy ds Z, <
t) Applylng (2.10) toV{* = Z and (2.9) toV®@ =V (recall that
=U,) yield

r ; v ;
P(TY(V)>I)<P</CZSZAY>§>+P</dst>§>
0 0
Ho
t
P ds Vg > =
+ (0/ s >3>

< 2%%ex 7t E d
< pl — 96}’2 + s Uy

3 B/2 B _1 _ _
+(3) Ca+p) EEh
Using the fact thatUy) is a martingale starting fronZ, givesEU, =
EUo = EZ, = rEZ;, by scaling. Finally, applying (2.12) tv @ =U,

t =v with Uy = Z, gives E(Uf) < el + B)P(v* + E(ZP)) <
Co(a, B)(v VvV )8, implying the desired estimate (maybe with a larger
constantCg). O

Recall (4.1). The rest of this section is devoted to estimating the tail
probability of the exit time oY from an intervall—a, b] with b > 0 and
a > v >0.Inthe case =0in (4.1), recall that by Lemma 3.6, we know
how to estimate this tail. The idea here consists of reducing the case of
v > 0 to that ofv = 0. Write

pu(a, by t) =P(Ty(—a) > Ty (b) > ). (4.5)

Recall thatTy (x) is defined as the hitting time atby Y the solution of
Eq. (4.1) with initial value for the minimum af (so the probability term
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of (4.5) depends implicitly o). Forv = 0, we have from Lemma 3.6
that there exist€'s = Cs(«, 8) > 0 such that

$o(a, b; 1)
2
. Csexp(—gi557) foralla>b>0, t > 0.
Csbh?@ P —2=F exp(— 2(a+b)2) forallb<a<2b, t > (a+b)>

(4.6)
We distinguish the two caseg,> 0 andg < 0, in boundingg, (a, b; 1).

LEMMA 4.2. - Recall(4.5). If 8 > 0, we have for al0 < v < a and
b,t >0

bo(a.bit) < {( 2) doa. i 1), @.7)
28 ¢o(2a, b; 1).

Lemma 4.2 together with (4.6) give a uniform estimatedofa, b; 1)
in the caseB > 0. In the case that/v > 1, the first estimate of
Lemma 4.2 is sharper, whereas the second deals with the caseithat
nearby ta.

Proof. —We prove the two estimates in the same way. (&) be the
solution of the following equation:

Zo=0, (4.8)

{ dZ, =2y Z; dW; + 2alo<i<n) + 28140y dt,
Z,=0, t>¢%infr>b: z,=0),

where(W,) is a real valued Brownian motion. It follows from Proposi-
tion 2.1 that

o]

¢U(a,b;t)=IP’</sts>t;§z<a—|—b>. (4.9

0

Let (W[) be an independent Brownian motion and consider a praqé3s
which is the solution of

dO, =2/0; dW, + 2B <1 <pv) dt,
©,=0, 0<s<bh, (4.10)

0, =0, 1> Zinf{r>b: © =0).
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Define

v,z 40, t>0 (4.11)

Applying the additivity of the squared Bessel processes (cf. [22, Chap-
ter XI1]) to the two independent processésand ® given respectively
by (4.8) and (4.10), we have for some Brownian motigri), ¢ > 0)

Vo=0, (4.12)

{ AV, =2JV; dy: + 2ado<i<n) + 2B1i>p)) dt,
V,=0, t>¢ Einfir>b: v, =0},

so that the law of the procedsdoes not depend an Observe that (4.9)
is also valid forv = 0 by replacing the procesé by the proces¥, which
means for allk > 0,

¢o(x, b;t) =P</Vsds >t Ly <x —|—b>. (4.13)
0

Now, letx > a. Use of (4.11) shows that the probability term of (4.13) is

o0

>P</sts>t;§z <a+b; e <x+b>
0

=IP’</ZSds >1;¢y <a—|—b>P(§@ <x+b)
0
=¢,(a,b;)P(Lg <x + D). (4.14)

It remains to compute the probability term in (4.14). Siég = O,_,
0<s <¢p — b) is aprocess of Ia\/BESCS’3 on [0, v] and of lawBESJ
on (v, oo) till its first hitting time at 0, we see that

P < x +b) =E(P(BES hits 0 before timec — v | r = 6,))
O,
=K —
exlo( 2(x — v))

-(5)"

where the second equality is due to the fact thatBE&S hits 0 before
time u with probability exg—r/2u) (this can be seen, e.g., from (2.8) by
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letting A — O there), and the third follows from (2.7) by takidg= 28

and by lettingh — 0. This, by takingx = a and x = 24, combining
with (4.14) yields the two estimates of (4.7) and completes the proof of
lemma. O

For the case < 0, we have

LEMMA 4.3. - Let B < 0. Recall(4.5). There exists a constality =
Co(a, B) > Osuch thatforalla > bV v,v>0andb, > 0that

2t
¢U(Cl, b, t) < Cg eXp(—m) . (415)

Moreover, for allb <a < 2b,0< v < a andt > (a + b)?, we have

t —(a+p) 24
¢U(Cl, b, t) < Cg(m) eXp(—m) . (416)

Proof. —We use the same idea as in the previous proof, but the details
are a little more complicated. Recall (4.12)—(4.13) for the prodéss
Let () be an independent Brownian motion and define in this proof
the process®,) as the solution of (recalling 8 is positive)

dO, =2/0; dy; — 2B p<i<piv) dt,
©,=0, 0<s<b, 4.17)

0, =0, 1>t Zinf{r>b: © =0).
Therefore the two proce#3 andV are independent. Define in this proof

z.%v, 10, >0 (4.18)
Use of the additivity of BESQ for (4.12) and (4.17) implies that
the processZ verifies Eqg. (4.8) with some Brownian motio#,
therefore (4.9) again holds. It follows from (4.13) that, witkx@ < 1
being a constant whose value will be given ultimately,

$v(a, b;t)
o0 o0
=P /Vsa’s—i—/@sds>t; Ly <a—+b; Lo <a—|—b]
0 0
00 o0 o0
<P /(~)Sds>ot; Lo <a+b] +P /des>t—/@xds;
0 0 0
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o0
Ly <a+b; /@Aydsgot; Lo <a+b]
0

o0
=Pl/(~)sds>ot; Lo <a+b]
0

00
+E [¢0 (as b; t— /ds @Y> l(fooo Oy dsgat;§@<a+b)]
0

= I+ I, (4.19)

with the obvious notation. Le®, £'@,.,, s > 0. Thend is aBESG”
on [0, v] and aBESJ on (v, 00), absorbed at its hitting time at 0. Using
successively the Markov property éf at v, (2.8) and (2.7) gives the
following equalities

32 oo
A O, ds
E (e 2 .[0 s @ 1@@ <a+b))

W2 v 22 oo Y
_ _ 2 [ Ods — 2 [“BESQ(s)ds _ A
=E(e7h @ Ele 7k Lges@u-n=o |7 =0.])

~

2 0 %
- E(exp(—%/@s ds — %Acoth(k(a — v))))
0

sinhi(a — v)\ "?!
- < sinhia ) '
It follows that
2 oo i _ 181
E(e? Jo @Yy carn) = (%) . O0<i< % (4.20)
Now, we are going to show (4.15). Take= 1/2 in (4.19). Applying
Chebychev’s inequality to (4.20) with= r/(2a) gives

n?t
I3< eXp<_1TaZ)’
and by (4.6),

2t
14 < ¢ola, b;1/2) < Cs exp<_m)’

implying (4.15) ifCg > 1+ Cs.
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It remains to consider the cage< a < 2b, t > (a + b)%. Leto =

;%”b/% €[9/10, 15/16]. Again applying Chebychev’s inequality to (4.20)

with A = /(a + b/2) gives

I3 < <S|nL) v exp<_n72t>
(a+b/2) 2(a + 2b/3)?
< (5/2) exp(—nizt) (4.21)
2(a + 2b/3)?
Applying (4.6) tol, shows that

7T2[
I4< Csb® P max  x e PP e awn?
1/16<x<1/10

2 0
—_r _ O, ds
x E [e 2a+b)? Jo~ exds 1, <a+b)}

<C N\ e i
< Caula, B) <m> xp(—m)’

which, in view of (4.19) and (4.21) implies (4.16), and we end the proof
of Lemma 4.3 by takingCg = (1 + Cs) vV (C10+ C11). O

Combining (4.6) and Lemmas 4.2 and 4.3 gives the following

COROLLARY 4.4.— Recall (4.1). There exists a constanf;, =
C1o(a, B) only depending o, 8 such thatforalla > b > 0,0< v < a,
t>(a+b)?

2
P(Ty(—a) > Ty(b) > t) < Clzexp<—32(274:b)2). (4.22)

Furthermore, if0 < v <a/2 < b, we have
2

P(Ty(— Ty (b) > t) < C1 b2 @A~ +h) ex (—L
(Ty(—a) > Ty (b) > 1) 12 p 2a+b)?

). (4.23)

5. PROOFS OF THEOREMS 1.1-1.3

Recall (1.1). Let us at first establish a zero-one law:

LEMMA 5.1.— Let f > 0 be a nondecreasing function. The events
{SURcs<, X5 > 1 f(1), 1.0}, {SUpg,, X; < +/1/f (1), i.0} and
{sUpc < 1Xsl < /1/f(1), .0} have probabilities) or 1.
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Proof. —The proof relies on the ergodicity of the Brownian scaling
transformation. Precisely, for fixad> 0, define the processds® and

X© py BO L L p andx© d=8fic X,, for t > 0. Therefore, we have

Je

that (see, e.g., [22, Exercise XII1.1.17])

(B, B) % (B,B), c¢— oo, (5.1)
where B denotes an independent Brownian motion, aﬁ@» means
convergence in law in the space of continuous functigns C(R,, R),
endowed with the topology of the uniform convergence on every compact
set. LetA be an event determined by, &= F(B;, t > 0) with F: 2 —

{0,1} a measurable function. Defina. by 1, = F(B\, t > 0).
By approximating F(B;, ¢+ > 0) by bounded continuous functions in
LY(2,P,o(B)), we deduce from (5.1) that

lim P(ANA) = P(A)2. (5.2)

Now, we can prove Lemma 5.1 by using (5.2) and the fact sHa(;,
t > 0} =o{B,;, t > 0} (which follows from the pathwise uniqueness
of (1.1), see [4]) as follows: consider for example= {sup¢, <, X, >

J/t f(1),1.0.) (the other two events can be treated in the same way), and
def

Ac = {sUpe, o, X9 > /1 f(1), i.0.}. Using the monotonicity off, we
have that
ACA., c¢c=>1, (5.3)

which in view of (5.2) implies that
P(A) = lim P(ANA,) = P(A)?,

yielding thatP(A) =0 or 1, as desired. O

Proof of Theorenl..1 — The convergence part of this test can be proven

in a standard way. Le} def exp(n/logn) for largen. Itis well-known (cf.
Csaki [7] for a rigorous justification) that we can limit our attention to the
“critical” case

zi- Vloglogr < f(1) <
o

Therefore it is easy to see that

Vl0oglogr, > 1. (5.4)

Qi N
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fgfa)exp(_ffz%) o0

1 &2 f2(tn)
= Z ) exp(— > > < 00. (5.5)

n

Recall (3.1). Using scaling and (3.2), we have

P(sup X, > i f(1)

0<s <1

_ Iny1 Cis @ f2(t)
‘P<TX(1) < znf2<rn>) S Fn) exp(_ 2 )

which is summable by (5.5). It follows that almost surely for all lange
SURy<y<ry g X5 < V1, f (). In view of the monotonicity, we have for
all 1 € [t, tay1), SURc <, X5 < SURcycy,,y Xs < Vi f (1) < VT (1),
proving the convergence part of Theorem 1.1.

To treat the divergence part of Theorem 1.1, we again assume (5.4).

Let £(r) £ £(+2). Define fori > 2, r; ©'exp(i/logi) and

def

A {£<T()< ri2 }
R T S TS

Observe that; /r;_1 — 1~ 1/logi and(1/(3&)) logi < f(r;) < (3/&) x
logi for largei > io. It follows from (3.2) that

72 7'2—1 72
P(A) = B(Tx (D) < F2(r)) — P(TX(D <y (n))

L

-2 72 —2 72 N 2
Cy exp(—a f (”i)> C1 exp(—a S (Vi)ri>

D 2 ) fw 27,
>C1(1—-e3) % exp(—&zfzz(ri)), i >io. (5.6)
It then follows that
> P(A) = oo. (5.7)

We shall apply the Borel-Cantelli lemma to show that

P(A;;i.0) > 0. (5.8)
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To this end, let us estimate the second moment tert(df N A;) for
ip <i < j. Recall (1.1). Applying the strong Markov property for the
Brownian motionB at the stopping tim&x (r;) gives

S def 5 = > +
X, E Xyiryon —ri =B+ aM, — B(I, — (ri + Iryey)) . 120, (5.9)

where B is a Brownian motion starting from 0, independentfo}g((,i)
((FX, t = 0) being the natural Afiltration on(), and M, and IA,Aare
respectively the past maximums ¥f and of— X, . Define similarly (r)
for r > 0. Conditionally onlz, ., T'(r) is independent af 7 ..

Notice thatT (r;) = Tx (r;) + T (r; — r;). Applying (4.2) toT (r; — r;)
withr=r; —r;, t = rjz/fNZ(r.,-), v=r; + Iy, gives

. 2
PA;NA)SE[1LP( T —r %f"_)]
( i) [A, ( (7 r)<f2(rj)| Ty (r7)
Cgr.,-~ exp<—&2(rj - Vingz(”j)
(’”j —’”i)f(’”j) er
On the other hand, we have from (3.2)

2C, &Zfz(ri)> .
P(A;) < = 2L )
A< f@r) exp( 2 :

<P(A)

). (5.10)

WV

io. (5.11)

In view of (5.6), (5.10)—(5.11), several lines of elementary calculations
show that

C14P(A)P(A)), if j —i>log?i,
P(A;NA;j) < CisP(A;) ) Cs, iflogi <j—i<log?i, (5.12)
C17P(A) e CU—D  if2 < j—i <logi.

It follows from (5.7) and (5.12) that

o P(A;NA,
liminf ZZgz, j<n ( 2]) <
" (Xacica P(AD)

which in view of (5.7), according to Kochen and Stone’s version of
the Borel-Cantelli lemma (cf. [15]) implieB(A;; i.0.) > 1/C14 > 0.
This probability in fact equals 1 according to Lemma 5.1. Finally,
write 7, = 2/ f2(r;). Recall f(r) = f(¢?). Observe that om;, we have
SURcs<r, X5 > 1 = /T f(r) = I f(rD) = /5 f(t;). This completes
the proof since we have shovi{4;;i.0.)=1. O
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Proof of Theoreml.2 —Since the proof is similar to the above one,
we just sketch the main steps. First, the convergence part follows from
Lemma 3.1 and the monotonicity, and the details are omitted. To prove
the divergence part, we only have to treat the critical case

(logH)Y@P < £ty < (logt)??, 1> 1. (5.13)

Define in this case

F 8t < Te(r) < a2 T(Tx () < i f20r) ), (5.14)

with r; &foi % r2f2(r;) and f(x) f(x3) By changingX to —X

and interchanging and g, we have from (3.2) that
P(Tx(—l) < 8)
22121 (@ + B)
Br(3—p—a/2T(@/2)
Applying Lemma 3.1 and (5.15) gives
P(F) 2 P(Tx(r1) > t;) = P(Tx (1) > tis1) — P(I (ti2) = r: f2(r)

2 \-B liv1
> Cuof) 7~ B(Tu(-1) < o =)

> 2 font. (5.16)

B2
el/zexp<——), ¢ — 0. (5.15)
2¢

On the other hand, we have from Lemma 3.1 that
P(F) <P(Tx(r;) > 1;) < Co0f (1) P (5.17)

For j > i+ 2, we recall (5.9) to bounB(F; N F;) in a similar way as to
the proof of Theorem 1.1, by using (4.3) instead of (4.2). It can be shown
that

; i (i 1Y
P(F; N Fj) < C21P(F;) (e—cﬂf o 4 Iy (r— o ) ) (5.18)
T ri fry)

From (5.16)—(5.18), the proof of the divergence part of Theorem 1.2 can
be completed in a similar way to that of Theorem 1.1. The details are
omitted. O
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Proof of Theoremnl.3. — Similarly, we only treat the divergence patrt.
We can assume without any loss of generality that

2 4
—+/loglogr < f(r) < —+/logloget, 1> 1. (5.19)
b T

Define

G; d:ef{Tx(—ri) > Tx(}’l’) > 1 Tx(}’l’) < ti+l}s (520)

with r; &' exp(i/logi), ands; €72 £2(r,), and £ (x) &' £ (x3). It follows

from Proposition 3.3 and our choicesf¢; that
272,

P(G) = F(r) P exp(—in f8 (rl)), (5.21)
wheref (x) < g(x) means that & liminf,_ o, f(x)/g(x) <limsup,_,
f(x)/g(x) < oo. To estimate the second momeRtG; N G;), we
recall (5.9). Use of the hitting tim& (x) atx by the proces¥ gives

P(GiNG)) SE[AGP(T(=rj —r) > T(rj = 1) > t; = tisa | Fiy )],
which, by applying Corollary 4.4 td@y(x) = T (x) with a = rj +ri,

b=r;j—rit=t; —tiyg andv =r; + I (Tx(r;)) € (r;, 2r;) leads to the
following estimate

C2sP(GHP(G)), if j —i>logi;

Co4P(Gj) e CsU-D  if 2 < j—i <logi. (5.22)

P(G;NG)) < {

From (5.21)—(5.22), the proof of the divergence part of Theorem 1.3 can
be completed in exactly the same way as in the proof of Theorem 1.1. We
omit the details. O
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