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FLUCTUATION THEORY
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We first establish a combinatorial result on deterministic real chains. This is then applied to prove a
path transformation for chains with exchangeable increments. From this transformation we derive an
identity on order statistics due to Port, together with some extensions. Then we give an interpretation of
these results in continuous time. We extend some identities involving quantiles and occupation times for
processes with exchangeable increments. In particular, this yields an extension of the uniform law for
bridges obtained by Knight.

1. Introduction

Let S be a chain with exchangeable increments, that is, a sequence (S
i
)
i&"

of

random variables, with S
!
¯ 0, such that the increments ∆S

i
¯S

i
®S

i−"
are

exchangeable in the following sense : for every permutation σ on ²1,…, i´, the i-tuples

(∆S
"
,…,∆S

i
) and (∆Sσ(")

,…,∆Sσ(i)
) have the same law.

For integers 0%k% n the (k, n)th quantile of S is defined to be

M
k,n

B inf(x :3
n

i=!

1²Si
%x´ "k* . (1)

For fixed ω, M
k,n

(ω) is the inverse, at k}n, of the distribution function of the uniform

probability on the space ²S
!
(ω),S

"
(ω),…,S

n
(ω)´. We can also describe M

k,n
in terms

of order statistics. For that, we have to define a total order on ²S
!
,S

"
,…,S

n
´ : we say

that S
i
is smaller than S

j
and we denote it by S

i
AS

j
if S

i
!S

j
or S

i
¯S

j
and i! j.

Then, although M
k,n

can occur more than once in the set ²S
!
,S

"
,…,S

n
´, it falls

(k­1)th from the bottom in this set rearranged in increasing order according to

A (see [13, 17]). Note also that M
!,n

¯ inf
i%n

S
i
and that M

n,n
¯ sup

i%n
S

i
.

The integers k and n being fixed for every chain S, we will use S « to denote the

chain (S
k+i

®S
k
, 0% i% n®k). In the special case where S is a random walk,

Wendel [17] established the following identity :

(M
k,n

,S
n
)¯
(d)

(sup
i%k

S
i
­ inf

i%n−k

S !
i
,S

n
). (2)

His proof was based on an extension of Spitzer’s identity. More recently, Dassios [7]

and Taka! cs [15] gave other analytic proofs of this result, dealing at the same time with

the continuous-time case.
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When k¯ 0 or n, this identity holds in the path and is obvious, so the following

question arises : does there exist a path transformation between S and another chain

Sh distributed as S, such that the pathwise identity

(M
k,n

,S
n
)¯ (sup

i%k

Sh
i
­ inf

i%n−k

Sh !
i
, Sh

n
)

holds? Embrecht, Rogers and Yor [8] and Bertoin, Chaumont and Yor [3] gave

partial answers. Their proofs of (2) are based on path considerations but do not

involve the construction of a chain such as Sh . The aim of this paper is to give a

transformation such as the one above which could also explain the following more

complete Port’s identity.

Define the time L
k,n

to be the index of the term which is the (k­1)th from the

bottom in the set ²S
!
,S

"
,…,S

n
´ rearranged in increasing order according to A. Note

that, in particular, X
Lk,n

¯M
k,n

and for instance, L
!,k

is the index of the first infimum

of S before k and L
k,k

is the one of the last suprema of S before this time. To simplify

the notations we put

m
k
B inf ²i& 0:S

i
¯ inf

l%k

S
l
´ (¯L

!,k
),

mk
k
B sup ²i%k :S

i
¯ sup

l%k

S
l
´ (¯L

k,k
).

We will denote by M
k,n

(S ), L
k,n

(S ), mk
k
(S ),m

k
(S ),… the variables M

k,n
,L

k,n
,mk

k
,m

k
,

… when it is useful to emphasise that they refer to S.

By similar calculations to those of Wendel [17], Port [13, Theorem VI.1]

established the following identity.

T 1 (Port). For e�ery random walk S,

(M
k,n

,L
k,n

,S
n
)¯
(d)

(sup
i%k

S
i
­ inf

i%n−k

S !
i
, mk

k
(S )­m

n−k
(S «), S

n
). (3)

The transformation which we will present is the consequence of a combinatorial

result which is proved in the second section. In the third section, we will show how

it enables us to explain the sums on the right-hand side of the identity (3). In the

particular case where the chain increases or decreases by jumps equal to 1 or ®1, we

will also be able to get a similar description for both the first and the last hitting time

of M
k,n

by S.

In the last section, we deal with the continuous-time case. We will derive, from the

discrete-time results, a representation of the law of the occupation time of a process

with exchangeable increments X above a level X
u
, 0% u% 1. In particular, for bridges

with exchangeable increments, if mk
u

is the last time of the maximum of X before u,

and m!

"−u
is the first time of the minimum of (X

u+s
®X

u
, 0% s% 1) before 1®u, then

under certain conditions, the variable mk
u
­m!

"−u
is uniformly distributed over [0, 1]

(see Theorem 6). This result has been proved by Knight [12] in the particular case

where u¯ 1 (see also [5, 10, 16]).

2. Notations and preliminary results

We begin by presenting in Lemma 1, a combinatorial result for deterministic

sequences.
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For every j `., we denote by Σ
j
the set of real sequences with length j starting

from 0, that is,
Σ

j
¯²s¯ (s

!
,…, s

j
) `2j+" with s

!
¯ 0´.

Then, for every sequence s `Σ
j
and i¯ 1,…, j, we denote by AG

i
(respectively AH

i
)

the number of indices 1% l% i at which s
l
" 0 (respectively s

l
% 0), that is,

AG

i
¯3

i

l="

1²sl
"
!
´,

AH

i
¯3

i

l="

1²sl
%
!
´ ¯ i®AG

i

and we set AG

!
¯AH

!
¯ 0. Let αG

i
and αH

i
stand for the inverses of AG and AH at i :

αG

i
¯min ²l :AG

l
¯ i´, i¯ 0,…,AG

j
,

αH

i
¯min ²l :AH

l
¯ i´, i¯ 0,…,AH

j
.

Finally, we introduce the sequences sG and sH given by sG

!
¯ sH

!
¯ 0 and

sG

i
¯3

αG

i

l="

1²sl
"
!
´ (sl®s

l−"
), i¯ 1,…,AG

j
, (4)

sH

i
¯3

αH

i

l="

1²sl
%
!
´ (sl®s

l−"
), i¯ 1,…,AH

j
. (5)

One of the proofs of (2) given in [3] required this path decomposition (see also [2, 14]

and [9, Section XII.8]). The sequence of increments of sG corresponds to the

subsequence of the increments s
l
®s

l−"
of s for which s

l
" 0. In other words, sG is

obtained by closing up and joining together the positive excursions of s, provided that

a positive excursion includes the step which takes s out of the negative half-line. There

is a similar description of sH.

From now on, the integers k and n (0%k% n) are fixed and for every s `Σ
n
, we

define L
k,n

as for S in the introduction. We then split the sequence s into the reversed

pre-L
k,n

sequence s("), and the inverse post-L
k,n

sequence s(#) :

s(") ¯ (s
Lk,n−i

®s
Lk,n

, 0% i%L
k,n

), (6)

s(#) ¯ (®s
Lk,n+i

­s
Lk,n

, 0% i% n®L
k,n

). (7)

We denote by s(")G and s(")H the chains evaluated from s(") as in (4) and (5) for

j¯L
k,n

. We define s(#)G and s(#)H in the same way.

For every sequence s `Σ
j
, j& 0, we denote by r the following return operator:

r(s)
l
¯ s

j−l
®s

j
, l¯ 0,…, j

and if t is any other real sequence the juxtaposition operation from s to t is defined

by

sFt
l
¯

1

2
3

4

s
l

if l% j,

s
j
­t

l−j
if l" j.

Applying these operations to the chains s(")G, s(")H, s(#)G and s(#)H, and using the

associativity of F we define the following transformation:

sh ¯ r(s(")H)F(®s(#)G)Fr(s(")G)F(®s(#)H).

Let x
"
%…%x

n
be an ordered family of real numbers. We denote by Σx

n
the subset

of Σ
n

which consists of sequences s¯ (s
!
,…, s

n
) such that the increasing rearrange-

ment of its increments, s
"
®s

!
,…, s

n
®s

n−"
is x¯ (x

"
,…,x

n
). Here is the key result of

this paper.
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L 1. The map ψ :s* sh is a bijection from Σx

n
to itself.

R 1. Port [13, Theorem VI.2] deduced the existence of a weaker

combinatorial result from Theorem 1 (see also Wendel [17, Theorem 5.1]). We are

going to deduce the identity (3) from the explicit form of this bijection.

Proof of Lemma 1. First, it is not difficult to see that if s belongs to Σx

n
then so

does ψ(s). Indeed, the set of the increments of s(")G, s(")H, s(#)G and s(#)H is exactly

x
"
,…,x

n
and the return operator does not change the increments of the chains s(")G

and s(")H.

Let now t be any chain belonging to Σx

n
and set t«¯ (t

k+i
®t

k
, 0% i% n®k). Recall

that mk
k
(t)¯ sup ²i%k : t

i
¯ sup

l%k
t
l
´ and m

n−k
(t«)¯ inf ²i& 0: t!

i
¯ inf

l%n−k
t!
l
´. We

then split t at the times mk
k
, k®mk

k
, m

n−k
(t«) and n®k®m

n−k
(t«), which gives us the

following four chains :

t(") ¯ (t
i
, 0% i%mk

k
(t)),

t(#) ¯ (t
mk

k(t)+i
®t

mk
k(t)

, 0% i%k®mk
k
(t)),

t($) ¯ (t!
i
, 0% i%m

n−k
(t«)),

t(%) ¯ (t!
mn−k(t

«)+i
®t!

mn−k(t
«)
, 0% i% n®k®m

n−k
(t«)).

Then we can prove that there exist two unique chains u(") and u(#), such that

(u(")
H, u(")

G)¯ (r(t(")), r(t($))) and (u(#)
H, u(#)

G)¯ (®t(%),®t(#)). The chains u(") and u(#)

are obtained by successive iterations: the length of u(") must be l¯mk
k
(t)­m

n−k
(t«).

Then we construct u(")

l
as the sum of the increments of r(t(")) and r(t($)). On the other

hand, the last increment u(")

l
®u(")

l−"
of u(") must coincide with the last increment of r(t($))

if u(")

l
" 0, and with the last increment of r(t(")) if u(")

l
% 0. This specifies u(")

l−"
and

we can therefore construct u(") by inverse induction. The method of constructing

u(#) is similar.

Now, we are going to verify that the chain s defined by sB r(u("))F(®u(#)) is the

antecedent of t by ψ, that is, ψ(s)¯ t. By the constructions of u(") and u(#), it suffices

to prove that L
k,n

(s) is equal to the length of the chain r(u(")), that is, the length of u(").

Indeed, s(") will be u(") and s(#) will be u(#). The number of non-positive values of u(")

corresponds to the length of u(")
H ‘plus 1’, which is also the length of t(") ‘plus 1’, that

is, mk
k
(t)­1. In the same way, the number of positive values of u(#) is equal to the length

of t(#), that is, k®mk
k
(t). Let τ be the length of u("). Then, from above, the rank of

s(τ) according to the order A is (mk
k
(t)­1)­(k®mk

k
(t))¯k­1, which is precisely the

definition of L
k,n

(s). *

3. Some consequences for chains with exchangeable increments

We now turn to the probabilistic interpretation of this combinatorial result. Let

S be a chain of random variables with exchangeable increments as defined in the

introduction. We denote by S (") the reversed pre-L
k,n

chain and by S (#) the inverse

post-L
k,n

chain as in (6) and (7). Then we define the chains S (")
G, S (")

H, S (#)
G and S (#)

H

as in (4) and (5). Using the operations defined in the previous section, we construct,

from S, the chain Sh :

Sh ¯ r(S (")
H)F(®S (#)

G)Fr(S (")
G)F(®S (#)

H). (8)

(Notice that for k¯ 0 or 1, this transformation reduces to the identity map.)



      733

Let ' be the exchangeable sigma-field of (∆S
"
,…,∆S

n
), that is, the sigma-field

generated by the increasing rearrangement of ∆S
"
,…,∆S

n
. Here is the main result of

this paper.

T 2. Conditionally on ', the chains Sh and S ha�e the same distribution.

Proof. Let x¯ (x
"
,…,x

n
) be an ordered family of real numbers. Then, on the

one hand, since (∆S
"
,…,∆S

n
) are exchangeable, the law of S, conditionally on (∆S

"
,

…,∆S
n
)¯x, is the equi-probability on the set Σx

n
, defined in the previous section. On

the other hand, by Lemma 1 the law of Sh , conditionally on this event, is also the equi-

probability on Σx

n
. *

Note that by the time-reversal property of chains with exchangeable increments,

the chain
r(Sh )¯ r(®S (#)

H)FS (")
GFr(®S (#)

G)FS (")
H

also has the same distribution as S.

Now we are going to show how Theorem 2 implies Port’s identity (3) and also

allows us to interpret each part of the sum mk
k
(S )­m

n−k
(S «) in its right-hand side.

Let R
k,n

be the number of positive indices less than or equal to L
k,n

at which the chain

S is less than or equal to M
k,n

:

R
k,n

¯ 3
Lk,n

i="

1²Si
%Mk,n

´. (9)

Then we can complete Port’s identity by splitting the time L
k,n

as follows.

T 3. Conditionally on ', the triples

(M
k,n

,L
k,n

,R
k,n

)

and

(sup
i%k

S
i
­ inf

i%n−k

S !
i
, mk

k
(S )­m

n−k
(S «), mk

k
(S ))

ha�e the same distribution. In particular, the law of the �ariable R
k,n

does not depend

on n.

R 2. When S is a random walk, S « is independent of (S
i
, 0% i%k), and

Theorem 3 implies that the variables R
k,n

and L
k,n

®R
k,n

are independent.

R 3. We could also explain each part of the sum sup
i%k

S
i
­

inf
i%n−k

S !
i

in the same way as for the sum mk
k
(S )­m

n−k
(S «), but M

k,n
splits into

two variables which have no special interest.

Proof of Theorem 3. To prove this theorem, we only have to verify the three path

identities :

M
k,n

(S )¯ sup
i%k

Sh
i
­ inf

i%n−k

Sh !
i
, (10)

L
k,n

(S )¯mk
k
(Sh )­m

n−k
(Sh «), (11)

R
k,n

(S )¯m
k
(Sh ) (12)

and to apply Theorem 2. The second one has already been verified in the proof of

Lemma 1. Indeed, L
k,n

(S ) equals the sum of the lengths of S (")
H and S (")

G. Moreover,
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since S (")
H and ®S (#)

G are negative chains (except for the first value) then the length

of S (")
H corresponds to the last time at which the chain r(S (")

H)F(®S (#)
G) reaches its

past-maximum. Now, the chain r(S (")
H)F(®S (#)

G) is constructed with the increments

S (")

l
®S (")

l−"
of S (") such that S (")

l
% 0 and with the increments S (#)

l
®S (#)

l−"
of S (#) such

that S (#)

l
" 0; therefore this chain has length k. Similarly, the length of S (")

G is

the first time at which the chain r(S (")
G)F(®S (#)

H) reaches its past-infimum before

n®k. We prove the third identity simply by noticing that R
k,n

is the length of the

chain S (")
H.

Now, since R
k,n

is the length of the chain S (")
H, we can verify by the constructions

(4) and (5), that

S (")

Lk,n

¯S (")
H

Rk,n

­S (")
G

Lk,n−Rk,n

.

But on the one hand, S (")

Lk,n

¯®M
k,n

(S ), and on the other hand, we explained above

that the length of S (")
H corresponds to the last time at which the chain

r(S (")
H)F(®S (#)

G) reaches its past-maximum. But this length is R
k,n

; therefore

®S (")
H

Rk,n

corresponds to the absolute maximum of the chain r(S (")
H)F(®S (#)

G).

Similarly, ®S (")
G

Lk,n−Rk,n

is the value of the absolute minimum of the chain r(S (")
G)

F(®S (#)
H). That proves the first identity. *

Both the first and the last hitting time of the quantile M
k,n

are two other

interesting times to study. They are respectively defined by

T
k,n

B inf ²i& 0, S
i
¯M

k,n
´ and U

k,n
B sup ²i& 0, S

i
¯M

k,n
´.

The transformation described above enables us to give a representation of them which

is quite simple when the chain ‘passes continuously’ through the levels. In the next

section, this relation will be extended in continuous time to continuous processes with

exchangeable increments (see Theorem 7).

Recall that S «¯ (S
i+k

®S
k
, 0% i% n®k), and for convenience in the statement

of the following theorem, we put

N
k,n

B sup
j%k

S
j
­ inf

j%n−k

S !
j
.

In view of the identities previously established, the decompositions of T
k,n

and U
k,n

are as we expected, that is, the following theorem holds.

T 4. Assume that for each i `., the step ∆S
i
takes the �alues 1 or ®1 with

probability 1; then conditionally on ',

T
k,n

¯
(d)

inf ²i& 0, S
i
¯N

k,n
´1²Nk,n

&
!
´­inf ²i& 0, S !

i
¯N

k,n
´1²Nk,n

!
!
´,

U
k,n

¯
(d)

sup ²i% n, S
i
¯N

k,n
´1²Nk,n

%Sn
´

­(n®k­sup ²i%k, S
i
¯N

k,n
®S !

n−k
´)1²Nk,n

"Sn
´.

R 4. A joint identity involving M
k,n

,L
k,n

,R
k,n

,T
k,n

and U
k,n

also holds as

in Theorem 3.

Proof of Theorem 4. One can easily see that T
k,n

corresponds to the length of the

last excursion away from 0 of the chain S (").
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Since the transformation (8) is reversible, it is possible to write this length in terms

of the chains r(S (")
H) and r(S (")

G) explicitly. By the hypothesis, S (") passes through 0

‘continuously’ with probability 1. Thus, its last excursion stays either positive or

negative. In the first case the increments of this excursion are those of the chain

r(S (")
H) which runs until it first reaches the variable S (")

Lk,n

¯S (")
H

Rk,n

­S (")
G

Lk,n−Rk,n

, and in

the second case, this excursion is constructed with the chain r(S (")
G) which runs

until it first reaches the variable S (")

Lk,n

.

More formally, recall that ®(S (")
H

Rk,n

­S (")
G

Lk,n−Rk,n

)¯ sup
j%k

Sh
j
­inf

j%n−k
Sh !

j
, and

assume that this term is non-negative; then

T
k,n

¯ inf ²i& 0, r(S (")
H)

i
¯®(S (")

H

Rk,n

­S (")
G

Lk,n−Rk,n

)´

¯ inf ²i& 0, Sh
i
¯ sup

j%k

Sh
j
­ inf

j%n−k

Sh !
j
´.

If, on the contrary, ®(S (")
H

Rk,n

­S (")
G

Lk,n−Rk,n

)! 0, then

T
k,n

¯ inf ²i& 0, r(S (")
G)

i
¯®(S (")

H

Rk,n

­S (")
G

Lk,n−Rk,n

)´

¯ inf ²i& 0, Sh «
i
¯ sup

j%k

Sh
j
­ inf

j%n−k

Sh !
j
´.

Note that if S (")
H

Rk,n

­S (")
G

Lk,n−Rk,n

¯ 0, then T
k,n

¯ 0. It remains to apply Theorem 2 to end

the proof of the first identity.

The proof of the second identity is quite similar. It suffices to notice that n®U
k,n

equals the length of the last excursion away from 0 to the chain S (#). By the same

arguments as above, we can see that if S
n
®(S (")

H

Rk,n

­S (")
G

Lk,n−Rk,n

)& 0, then

n®U
k,n

¯ inf ²i& 0, r(®S (#)
H)

i
¯S

n
®(S (")

H

Rk,n

­S (")
G

Lk,n−Rk,n

)´

¯ inf ²i& 0, r(Sh )
i
¯Sh

n
®(sup

j%k

Sh
j
­ inf

j%n−k

Sh !
j
)´

¯ n®sup ²i& 0,Sh
i
¯ sup

j%k

Sh !
j
­ inf

j%n−k

Sh !
j
´

and if S
n
®(S (")

H

Rk,n

­S (")
G

Lk,n−Rk,n

)% 0, then

n®U
k,n

¯ inf ²i& 0, r(®S (#)
G)

i
¯S

n
®(S (")

H

Rk,n

­S (")
G

Lk,n−Rk,n

)´

¯ inf ²i& 0, Sh
k
®Sh

k−i
¯Sh

n
®(sup

j%k

Sh
j
­ inf

j%n−k

Sh !
j
)´

¯k®sup ²i%k, Sh
i
¯ sup

j%k

Sh
j
­ inf

j%n−k

Sh !
j
®Sh !

n−k
´.

Here again, if S
n
¯ (S (")

H

Rk,n

­S (")
G

Lk,n−Rk,n

) then U
k,n

¯ n. *

4. Continuous time

In this section, by a process with exchangeable increments we mean a process X

such that for every integer n the sequence S (n) ¯ (X
i#

−n, 0% i% 2−n) has exchangeable

increments in the sense defined in the introduction. Usually, results such as those we

have just presented for chains with exchangeable increments have some extensions to

continuous time. In the present case, although the interpretation of the time L
k,n

is not

possible for most of the processes with exchangeable increments, we will deduce

several interesting identities in law from the discrete-time results.
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The continuous-time analogue of the quantile M
k,n

has been introduced in many

papers, such as [1, 3, 6–8]. For a process X and a time t, it is defined to be the inverse

of the probability function of the occupation measure !t

!
1²Xu

`dx´ du, that is, for

every s, 0% s% t,

M
s,t

¯ inf (x,& t

!

1²Xu
%x´ du" s* .

The identity (2) extends as follows: for every process X with exchangeable increments,

(M
s,t

,X
t
)¯
(d)

(sup
u%s

X
u
­ inf

u%t−s

X
s+u

®X
s
, X

t
).

This has been shown in several ways as mentioned in the introduction. It is natural

to wonder if a transformation such as that of the previous section holds in continuous

time. The crucial point of the previous transformation is the decomposition of the

chain (S
i
, 0% i% n) at time L

k,n
which is defined by a special order. The map k*L

k,n

is a bijection from the set ²0,…, n´ to itself, such that the chain (S
i
, 0% i% n) is

entirely determined by (L
k,n

,M
k,n

, 0%k% n). But if X is a continuous-time process

such that P(X
t
¯ 0)¯ 0, for λ-almost every t& 0 (λ being the Lebesgue measure) we

can easily check that there does not exist any bijection s*L
s,t

from [0, t] to itself, such

that for every s% t, X
Ls,t

¯M
s,t

. On the other hand, the classical modes of

convergence of step processes to X do not involve the convergence of a sequence of

times L(n)

s,t
to a time L

s,t
belonging to the set ²u, X

u
¯M

s,t
´.

Nevertheless, at least when X is a Le! vy process, a random variable L
s,t

such that

(X rL
s,t

¯ u)¯
(d) 0X r& t

!

1²Xv
%Xu

´ d�¯ s1
would permit us to define a transformation similar to that we presented in the

previous section. However, for Brownian motion with drift, it is still possible to get

an analogue to the inverse of the transformation presented in Theorem 2, but we will

not deal with it in the present paper.

In the sequel we will often use the so-called return-time property, that is, if X

is any process with exchangeable increments then for every fixed u& 0 the process

(X
s
, 0% s% u) has the same law as the process (X

u
®X

(u−s)−
, 0% s% u). For

convenience, we take t¯ 1 and for s ` [0, 1], we put

M
s
BM

s,"
.

For any time u, let mk
u

and m!
u

be defined as

mk
u
B sup ²�% u :X

v
¯ sup

l%u

X
l
´,

m!
u
B inf ²�& 0:X !

v
¯ inf

l%u

X !
l
´ (13)

where, as in discrete time, X «¯ (X
s+l

®X
s
, 0% l% 1®s). We will use the order A

defined by X
u
!X

t
if X

u
!X

t
or X

u
¯X

t
and u! t, but note that

&"

!

1²Xl
AXu

´ dl¯&u

!

1²Xl
%Xu

´ dl­&"−u

!

1²Xu+l
!Xu)

dl (14)

in the following statements.

Here is the consequence of Theorem 3 in continuous time.
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T 5. For e�ery process with exchangeable increments X, we ha�e

P0Ms
` dx, &"

!

1²Xl
AXu

´ dl ` ds, &u

!

1²Xl
%Xu

´ dl ` d�,X
"
` dy1 du

¯P(sup
l%s

X
l
­ inf

l%"−s

X!
l
` dx, mk

s
­m!

"−s
` du, mk

s
` d�, X

"
` dy)ds (15)

with x `2, 0% s% 1, 0% u% 1 and 0% �% u.

Proof. For all integers n& 0 and j% 2n, we put

An

j
¯ 2−n 3

#
n

l=!

1²Xl#
−nAXj#

−n´ and Bn

j
¯ 2−n 3

j

l=!

1²Xl#
−n%Xj#

−n´.

Define also,

m
k
¯ 2−n inf ²l& 0, X

l#
−n ¯ inf

i%k

X
i#

−n´,

mk !
k−n

¯ 2−n sup ²l% n®k, X !
l#

−n ¯ sup
i%n−k

X !
i#

−n´

where X !
l#

−n ¯X
k#

−n
+l#

−n®X
k#

−n, 0% l% n®k. Let M (n)

k,#
−n and L(n)

k,#
−n be defined as

in the introduction with respect to the chain with exchangeable increments

S (n) ¯ (X
i#

−n, 0% i% 2−n), and note that ²L(n)

k,n
¯ j´¯ ²An

j
¯k2−n´. Then for every

positive, bounded, continuous function g defined on 2$, Theorem 2 gives

E(g(M (n)

k,#
−n,Bn

j
,X

"
)1²An

j =k#
−n´)

¯E(g(sup
l%k

X
l#

−n­ inf
l%n−k

X !
l#

−n, m
k
­mk !

n−k
, X

"
)1²mk+mk !

n−k=j#
−n´).

Therefore, if f is a positive, bounded, continuous function defined on 2#, then

3
!
%j,k%

#
n

f( j2−n,k2−n)E(g(M (n)

k,#
−n,Bn

j
,X

"
)1²An

j =k#
−n´)

¯ 3
!
%j,k%

#
n

f( j2−n,k2−n)E(g(sup
l%k

X
l#

−n­ inf
l%n−k

X !
l#

−n,

m
k
­mk !

n−k
,X

"
)1²mk+mk !

n−k=j#
−n´). (16)

Assume now that for λ-almost every t& 0, P(X
t
¯ 0)¯ 0. Then the return time

property implies that P(X
u
¯X

t
)¯ 0, for λ-almost every t& 0. Moreover, X has no

fixed discontinuities, thus P(X
u−

1X
u
)¯ 0. Then by the right continuity of the path

of X, and Lebesgue’s theorem of dominated convergence, one can check that if j
n

is

a sequence of integers such that j
n
2−n converges to u ` [0, 1], then An

jn

converges almost

surely to A
u
B! "

!
1²Xl

AXu
´ dl, and Bn

jn

to B
u
B!u

!
1²Xl

%Xu
´ dl, and if we put q

n
¯ 2nAn

jn

,

then M (n)

qn,#
n converges to M

Au

. Therefore, by dominated convergence, the right-hand

side of the equality (16) converges towards

&"

!

E( f(u,A
u
) g(M

Au

,B
u
,X

"
))du.

(Note that in this case, A
u
¯! "

!
1²Xl

%Xu
´ dl.) Assume, moreover, that the maximum of

X on [0, 1] is almost surely unique, that is, X
t
! sup

u%
"
X

u
and X

t−
! sup

u%
"
X

u
,

whenever t1mk
"
. Then this property implies that for every s ` [0, 1], the process X has
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almost surely a unique maximum on [0, s], and the process (X
s+u

®X
s
, 0% u% 1®s)

has almost surely a unique minimum on [0, 1®s]. Therefore, if k
n

is such that k
n
2−n

converges to s ` [0, 1], then m
kn

converges almost surely to m
s
, and mk !

n−kn

to mk !
"−s

.

Moreover, sup
l%kn

X
l#

−n­inf
l%n−kn

X !
l#

−n converges obviously to sup
l%s

X
l
­

inf
l%"−s

X !
l
. We conclude, by the same argument as above, that the left-hand side

of the equality (16) converges to

&"

!

E( f(mk
s
­m!

"−s
, s) g(sup

l%s

X
l
­ inf

l%"−s

X !
l
, mk

s
­m!

"−s
, X

"
))ds.

The identity (15) is proved under the hypothesis that for λ-almost every t& 0,

P(X
t
¯ 0)¯ 0, and the maximum of X on [0, 1] is almost surely unique.

In the general case, we construct a sequence X (n) of processes with exchangeable

increments satisfying the hypothesis above, and such that the variables involved in the

preceding integrals, defined with respect to X (n), converge almost surely, as n goes to

¢, to the same variables defined with respect to X. The following arguments are

inspired by an unpublished note of Bertoin, in which he proves the Sparre-Andersen

identity for processes with exchangeable increments (see (17)).

For every ε and t& 0, put X (ε)
t

¯X
t
­εt. If ε«1 ε, then ²X (ε) ¯ 0´f²X (ε«) ¯ 0´¯

²0´ almost surely; therefore the set of ε for which ²X (ε) ¯ 0´ has almost surely a positive

Lebesgue measure is finite or countable. By the same arguments on the upper convex

hull of the path of X (ε), one can see that the set of ε for which X (ε) has not a unique

maximum on [0, 1] is finite or countable. Then we construct a sequence (ε
n
) which

converges to 0 and such that, for every n `., the process X (n) BX (εn) has a unique

maximum on [0, 1] and satisfies P(X (n)

t
¯ 0)¯ 0 for λ-almost every t& 0. Now,

denote by mk (n)

s
and m!(n)

"−s
the times defined as in (13) with respect to

X (n). Then we have clearly, for every n, mk (n)

s
&mk

s
almost surely, and hence

lim inf
n!¢ mk (n)

s
&mk

s
. On the other hand, we easily check that lim sup

n!¢ mk (n)

s

corresponds to the time of a maximum of the process X ; therefore, by the definition

of mk
s
, we have lim sup

n!¢ mk (n)

s
%mk

s
. By the same arguments we can show that

lim
n!¢ m!(n)

"−s
¯m!

"−s
almost surely. Also, by dominated convergence, the variables

A(n)

u
¯&u

!

1²Xt
%Xu+(u−t)εn

´ dt­&"−u

!

1²Xu+t
!Xu−tεn

´ dt

and B(n)

u
¯!u

!
1²Xt

%Xu+(u−t)εn)
´ dt, converge respectively to A

u
and B

u
. And the same

convergence holds obviously for the other variables involved. Since X (n) is a process

with exchangeable increments which verifies the required hypothesis, we have

&"

!

E( f(u,A(n)

u
) g(M (n)

A
(n)
u

,B(n)

u
,X (n)

"
))du¯&"

!

E( f(mk (n)

s
­m!(n)

"−s
, s) g(sup

l%s

X (n)

l

­ inf
l%"−s

X !(n)

l
, mk (n)

s
­m!(n)

"−s
, X (n)

"
))ds.

Finally, we finish the demonstration by applying dominated convergence. *

Integrating over the variables x, y, s, u, or t in the relation (15), we derive the law

of some occupation times associated with X and a representation of its ‘entrance law’.
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C 1. Let X be a process with exchangeable increments ; then

(i) P(! "

!
1²Xl

AXu
´ dl ` ds) du¯P(mk

s
­m!

"−s
` du) ds, 0% s% 1, 0% u% 1;

(ii) if 5 is a random �ariable uniformly distributed o�er [0, 1], independent of X,

then both ! "

!
1²Xl

AX5´ dl and mk 5­m!

"−
5 are uniformly distributed o�er [0, 1] ;

(iii) if 5 is as in (ii), then

P(X
u
` dx) du¯P(sup

l%5

X
l
­ inf

l%"−
5

X !
l
` dx, mk 5­m!

"−
5 ` du), 0% u% 1, x `2.

Fitzsimmons and Getoor [10, Theorem (3.16)] have shown that when X is a Le! vy

process verifying some hypothesis on its entrance law, then the variable ! "

!
1²Xl

AX5´ dl

has a uniform law over [0, 1]. More generally, Knight [12, Lemma 1.1] showed that

this result still holds when X is replaced by any deterministic function which has a

‘continuous sojourn distribution’.

Besides the identity in Corollary 1(i), there exists another link between the

occupation time of a process with exchangeable increments and the time of its

minimum. This is the well-known Sparre-Andersen identity which has been extended

to continuous time in [2, 3], and in an unpublished note of Bertoin, for the most

general case. It states that for any process with exchangeable increments

&"

!

1²Xu
!
!
´ du¯(d)

m
"
. (17)

Identity (17) enables us to complete Corollary 1 for Le! vy processes. The following

result means, in particular, that if the variable ! "

!
1²Xl

AXu
´ dl admits a density function

f(u, s) over [0, 1] (for instance, in the stable case) then f is a symmetric function over

[0, 1]¬[0, 1].

C 2. Assume that X is a LeU �y process ; then for 0% s% 1 and

0% u% 1,

(i) P(mk
u
­m!

"−u
` ds) du¯P(mk

s
­m!

"−s
` du) ds ;

(ii) P0&"

!

1²Xl
AXu

´ dl ` ds1 du¯P0&"

!

1²Xl
AXs

´ dl ` du1ds.

Proof. We noticed in (14) that

&"

!

1²Xl
AXu

´ dl¯&u

!

1²Xl
%Xu

´ dl­&"−u

!

1²Xu+"
!Xu

´ dl.

But by the return-time property and the continuous-time version of the Sparre-

Andersen identity, one can easily check that the first term of the right-hand side of

the identity above has the same law as mk
u
. For the same reasons, the second term has

the same law as m!

"−u
. Moreover, since X is a Le! vy process, these two parts are

independent. Finally, we have

P0&"

!

1²Xl
AXu

´ dl ` ds1¯P(mk
u
­m!

"−u
` ds)

which completes the proof. *

Another remarkable result about occupation times is the uniform law for the time

of the minimum of a bridge with exchangeable increments. It was first proved by

Vervaat [16] for Brownian motion and by Chaumont [5] for stable Le! vy processes.
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Fitzsimmons and Getoor [10, Theorem 3.1] proved this identity for a large class of

Le! vy processes. The most general result were established by Knight [12]. He gives

some necessary and sufficient conditions for this time to be uniformly distributed.

Here is an extension of it which is a consequence of Corollary 1(i).

T 6. Let X be a process with exchangeable increments and assume that

X
"
¯ 0 with probability 1. Then for e�ery u ` [0, 1], both the �ariables ! "

!
1²Xl

!Xu
´ dl and

mk
u
­m!

"−u
are uniformly distributed o�er [0, 1] if and only if P(X

t
¯ 0)¯ 0, for λ-almost

e�ery t& 0.

Proof. First, note that

&"

!

1²Xt
AXu

´ dt¯&"

!

1²Xt
!Xu

´ dt­&u

!

1²Xt=Xu
´ dt.

Assume that P(X
t
¯ 0)¯ 0, for λ-almost every t& 0, then the second term of the

right-hand side of the equality above vanishes, almost surely. Moreover, we easily

derive from the exchangeability property that the process Y defined by

Y
t
¯

1

2
3

4

X
u+t

®X
u

t% 1®u,

X
t+u−"

®X
u

1®u% t% 1

has the same law as X, and ! "

!
1²Xt

!Xu
´ dt¯! "

!
1²Yt

!
!
´ dt. Therefore, the law of

!"

!
1²Xt

!Xu
´ dt, is the same as the law of !"

!
1²Xt

!
!
´ dt. In particular, it does not depend

on u. We conclude by Corollary 1(i).

Assume now that ! "

!
1²Xt=!

´ dt" 0, almost surely. By the return-time property, the

term !u

!
1²Xt=Xu

´ dt is equal in law to the variable !u

!
1²Xt=!

´ dt. Therefore, we have

E 0&"

!

1²Xt
AXu)

dt1¯E 0&"

!

1²Xt
!
!
´ dt1­&u

!

P(X
t
¯ 0) dt.

By the hypothesis, this term depends on u and cannot be 1. *

R 5. When Vervaat [16] proved Theorem 6 for u¯ 0 and Brownian

motion, he explained this result by a path transformation (see also [4, 5]). By splitting

a normalised Brownian excursion at an independent uniform time and by exchanging

the two parts, we get a Brownian bridge. It would be interesting to get Theorem 6 also

as a consequence of such a path transformation.

We end this paper by stating the continuous-time analogue to Theorem 4.

According to Kallenberg’s representation [11], a continuous process with ex-

changeable increments has the following form:

X
t
¯αt­γB

t
, t& 0

where B is a Brownian motion and α, γ are two random variables independent of B.

In this particular case, by classical arguments of discretisation, we easily derive from

Theorem 4 a similar identity. Let T and T « be the hitting-time processes of X and

X «¯ (X
s+u

®X
u
, 0% u% 1), that is,

T
x
¯ inf ²t& 0,X

t
¯x´, and T !

x
¯ inf ²t& 0,X !

t
¯x´, x `2.

Also put
N

s
B sup

u%s

X
u
­ inf

u%
"−s

X !
u
.
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T 7. Assume that X is a continuous process with exchangeable increments ;

then

(M
s
,T

MS

,X
"
)¯(d)

(N
s
, T

Ns

1²Ns
&
!
´­T !

Ns

1²Ns
%
!
´,X

"
).
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