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An Extension of Vervaat's Transformation
and Its Consequences
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Vervaat(18) proved that by exchanging the pre-minimum and post-minimum
parts of a Brownian bridge one obtains a normalized Brownian excursion. Let
s # (0, 1), then we extend this result by determining a random time ms such that
when we exchange the pre-ms-part and the post-ms-part of a Brownian bridge,
one gets a Brownian bridge conditioned to spend a time equal to s under 0. This
transformation leads to some independence relations between some functionals
of the Brownian bridge and the time it spends under 0. By splitting the Brownian
motion at time ms in another manner, we get a new path transformation which
explains an identity in law on quantiles due to Port. It also yields a pathwise
construction of a Brownian bridge conditioned to spend a time equal to s under 0.

KEY WORDS: Brownian bridge; Brownian excursion; uniform law; path
transformation; occupation time; quantile.

1. INTRODUCTION

Let B be a real Brownian motion defined on a probability space (0, F, P).
Then Brownian bridge and normalized Brownian excursion are processes
with paths in C([0, 1]), the first one with the conditional law of (Bt , 0�t�1)
given B1=0 and the second one with the law of (Bt , 0�t�1) given Bs>0,
0<s<1 and B1=0. Let b be a Brownian bridge and b(0) be a normalized
Brownian excursion. The main purpose of the present paper is to extend a
path transformation connecting the paths of b with those of b(0) which is
due to Vervaat.(18) In words, this transformation says that by inverting the
pre-minimun and post-minimum parts of a Brownian bridge, we obtain the
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path of a normalized Brownian excursion. More formally let us denote by
m0(X ) the first time at which a process X with paths in C([0, 1]) reaches
its absolute minimum:

m0(X ) :=inf[t�0 : Xt= inf
0�u�1

Xu] (1.1)

Denote also by V[X, T ] the path transformation which consists in split-
ting the path X at the random time T # [0, 1] and then by inverting the
two parts obtained, that is

V[X, T ] :=(XT+u (mod 1)&XT , 0�u�1) (1.2)

Then, Vervaat's result states as follows:

Theorem 1 (Vervaat(18)). m0(b) is almost surely unique and the
process V[b, m0(b)] is a normalized Brownian excursion.

By symmetry, we get the same result by splitting the bridge at time

m1(b) :=sup [t�1 : bt= sup
0�u�1

bu] (1.3)

This theorem was established by Vervaat to explain the identity in law
between the maximum of the normalized Brownian excursion and the
amplitude of the Brownian bridge, see Chung(7) and Kennedy.(14) Indeed,
the transformation V[b, m0(b)] preserves the amplitude of the initial pro-
cess b. However, since m0(b) is not a measurable functional of the process
V[b, m0(b)], this transformation cannot be inverted. This was proved by
Biane, (4) who completed Vervaat's result as follows:

Theorem 2 (Biane, (4)). Let U be a uniformly distributed random
value over [0, 1], independent of the normalized Brownian excursion b(0).
Then the process b$ :=V[b(0), U] is a Brownian bridge and 1&U=
inf[t�0 : b$t=inf0�u�1 b$u].

As a consequence, the time when the Brownian bridge reaches its min-
imum is uniformly distributed. This last result can be proved for bridges of
Le� vy processes, under ``good'' hypotheses, see Chaumont, (5) Fitzsimmons
and Getoor(11) more generally for some bridges with exchangeable incre-
ments, see Knight(15) and Chaumont.(6)

According to this definition, normalized Brownian excursion can be
considered as a Brownian bridge conditioned to stay positive. The initial
question which started the present work was: what does Theorem 2 become
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if we replace the normalized Brownian excursion by a Brownian bridge condi-
tioned to spend any deterministic time s # [0, 1] under the level 0?

For any process X with paths in C([0, 1]), we will denote by A(X )
the time it spends under 0, that is

A(X ) :=|
1

0
1[Xt�0] dt

We will prove in Section 2 that there exists a weakly continuous version in
s of the conditional law of the Brownian bridge b given A(b)=s. For any
fixed s # [0, 1], denote by b(s) a process with this law. Then the answer to
this question is:

Theorem 3. Let s # [0, 1] and U be a uniformly distributed random
value over [0, 1], independent of the process b(s), then V[b(s), U] is a
Brownian bridge.

Note that the law of the new process V[b(s), U] does not depend on
s and since this transformation preserves the amplitude of the initial
process, we deduce in particular that the amplitude of the Brownian bridge,
(that is supu�1 bu&infu�1 bu), is independent of A(b), the time it spends
under 0. We will prove a more general result in Section 3.

Now, we would like to get an equivalent to the direct version of
Vervaat's transformation (Theorem 1). That is, starting from a Brownian
bridge we would like to find a random time, say ms(b), such that the
process V[b, ms(b)] would have the same law as b(s). Denote by Ms(X )
the s-quantile of any process X with path in C([0, 1]):

Ms(X ) :=inf {x : |
1

0
1[Xu�x] du>s= (1.4)

Ms(b) is the level under which b spends a time equal to s, in particular,
M0(b)=infu�1 bu and M1(b)=supu�1 bu . Then it is not difficult to see
(on a picture) that the time ms(b) we are looking for belongs necessarily to
the set

[t : bt=Ms(b)]

In the case of Vervaat, (that is for s=0 and symmetrically for s=1), m0(b)
and m1(b) are measurable functionals of b. We will show in the next section
that it is not the case any more when s # (0, 1). In fact, ms(b) can be
described as follows:
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Let V be a uniformly distributed r.v. over [0, 1] independent of the
Brownian bridge b and call Lx

t (b) the local time at level x # R and time
t # [0, 1] of b, then ms(b) is defined by

ms(b) :=inf[t : LMs
t (b)=VLMs

1 (b)] (1.5)

We will use to simplify the notation LMs(b)
t (b) by LMs

t (b), as before. Now we
can state,

Theorem 4. Let b be a Brownian bridge and for s # (0, 1), define the
time ms(b) as before. Then the process V[b, ms(b)] has the same law as b(s)

and is independent of ms(b). Moreover, ms(b) is uniformly distributed over
[0, 1].

The rest of the present paper is organized as follows. In the next section,
we give the proofs of Theorems 3 and 4. Then we draw several consequences
of these results in Section 3 which are based on the independence between
the process V[b, U] and the time A(b) that b spends under 0.

Section 4 will be devoted to another path transformation which
involves the time ms(b). In particular, it implies and helps to explain the
following identity which gives a representation of the joint law of the
s-quantile Ms(b) and its associated time ms(b):

(Ms(b), ms(b)) =
(d )

(sup
u�s

bu+ inf
u�1&s

(bs+u&bs), m� s(b)+m
�

1&s(b)) (1.6)

where

m� s(b) :=sup [l�s : bl=sup
u�s

bu], m
�

1&s(b)

:=inf[l�0 : bs+l&bs= inf
u�1&s

(bs+u&bs)]

This identity is due to Port(16) for the discrete time case, [see also
Wendel(19)]. Dassios (8) proved the first part of this identity and extended
it to every process with exchangeable increments, [see also Bertoin et al.(2)].

As another application of this transformation, we will present in
Section 5 a measurable transformation of the Brownian bridge which has
the same law as the process b(s).

2. PROOFS OF THEOREMS 3 AND 4

We begin by stating a very general result which is the key point of this
paper. Let D([0, 1]) denote the set of c.a� l.a� g. functions over [0, 1].
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For any function f in D([0, 1]), t # [0, 1] and x # R, we denote by Lx
t ( f )

(Lx
t when no confusion is possible) the limit

Lx
t ( f ) := lim

= � 0

1
= |

t

0
1[x� f (u)�x+=] du (2.1)

when it exists and is finite. In that case, note that the occupation time at
x up to t equals 0:

|
t

0
1[ f (u)=x] du=0 (2.2)

For instance, Lx
t may represent the local time at level x and time t for

Brownian motion, Brownian bridge, normalized Brownian excursion and
more generally for every continuous semi-martingale with bracket t.

We state the following theorem for c.a� l.a� g. functions to not lose any
generality. However, in the sequel, it will be mainly used for continuous
functions. Let us apply definition (1.4) to c.a� l.a� g. functions and put:
M0( f )=infu�1 f (u) and M1( f )=supu�1 f (u).

Theorem 5. Let f be a function in D([0, 1]) such that Lx
1( f ) exists

and is finite for every x # R, and is positive for every x # (M0( f ), M1( f )).
Assume moreover that for every x # R, the function t [ Lx

t ( f ) is con-
tinuous. Let U be a uniformly distributed r.v. over [0, 1]. Let V denote
the rate: V=L f (U)

U �L f (U)
1 and W the time spent by f under the level

f (U): W=�1
0 1[ f (u)� f (U)] du. Then V and f (U) are independent. Moreover

V and W are uniformly distributed over [0, 1].

Proof. With the previous notations, one easily checks that F(x) :=
�1

0 1[ f (u)�x] du is the distribution function of the r.v., f (U). According to
(2.2), (for t=1), this distribution has no atom and then it is well known
that the r.v. F( f (U))=W is uniformly distributed over [0, 1].

Now, * being the Lebesgue measure, it comes from general theory that
for *-almost every x # (M0( f ), M1( f )),

P(U�t | f (U)=x)= lim
= � 0

P(U�t, x� f (U)�x+=)
P(x� f (U)�x+=)

= lim
= � 0

� t
0 1[x� f (u)�x+=] du

�1
0 1[x� f (u)�x+=] du

=
Lx

t ( f )
Lx

1( f )
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This calculation means that for *-a.e. x # (M0( f ), M1( f )), the distribution
function of U under P( } | f (U)=x) is given by

G(x)(t) :=
Lx

t ( f )
Lx

1( f )

By the assumptions for *-a.e. x, G(x) is continuous in t, so we can apply
the same result as before, and then the r.v. G(x)(U)=Lx

U�Lx
1 is uniformly

distributed over [0, 1] under P( } | f (U)=x). This distribution does not
depend on x, so the theorem is proved. g

In the sequel, we will use the following form of Theorem 5 which is
stated here for stochastic processes:

Let X be a stochastic process with paths in D([0, 1]) such that almost
surely Lx

1(X ) exists and is finite for every x # R, and is positive for every
x # (M0(X ), M1(X )). Assume moreover that almost surely, for every x # R,
the local time Lx

t (X ) is continuous in t. Let U be a uniformly distributed
r.v. over [0, 1], independent of X. Then X, LX(U)

U �LX(U)
1 and �1

0 1[X(u)�X(U)] du
are mutually independent. Moreover the r.v.s LX(U)

U �LX(U)
1 and �1

0 1[X(u)�X(U)] du
are uniformly distributed over [0, 1].

The proofs of Theorems 3 and 4 will be essentially derived from the
previous result. However, to show that there exists a weakly continuous
version in s of the law of b given A(b)=s, we will need on the following
lemma.

Lemma 1. The process (ms(b), 0�s�1) defined in (1.5) is almost
surely continuous at every fixed time in (0, 1). Moreover, when s goes to
0 (resp. 1), ms(b) converges almost surely to m0(b) defined in (1.1) (resp.
m1(b) defined in (1.3)).

Proof. Recall the definition of ms(b):

ms(b) :=inf[t : LMs(b)
t =VLMs(b)

1 ]

Then, since the function s [ Ms(b) is the inverse of the function

x [ |
1

0
1[bt�x] dt

which is a.s. continuous and strictly increasing, it is itself a.s. continuous.
Moreover, recall that V is independent of b. Therefore, to prove that
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s [ ms(b) is continuous at every time in (0, 1), it suffices to prove that

T (s)
v :=inf[t : LMs(b)

t =vLMs(b)
1 ]

is a.s. continuous at every s, for almost every v # [0, 1].
It is well known that the function (t, x) [ Lx

t (b)�Lx
1(b) is a.s. con-

tinuous. Therefore, from before, the function (t, s) [ LMs (b)
t (b)�LMs (b)

1 (b) is
a.s. continuous. Now, fix s # [0, 1]. Since, t [ LMs (b)

t (b)�LMs (b)
1 (b) is non-

decreasing, then it a.s. increases at left and at right at the time T (s)
v , for

almost every v # [0, 1]. Consider such a point v. Since for every u # [0, 1],
the function t [ LMu(b)

t (b)�LMu(b)
1 (b) is nondecreasing, then it is not difficult

to see that T (u)
v converges a.s. to T (s)

v when u � s.
It remains to deal with the case s=0, (the case s=1 being symmetric).

On the one hand, Ms(b) converges to M0(b) when s � 0 and on the other
hand, m0(b) is a.s. unique. Moreover, for each s, ms(b) belongs to the set
[u : bu=Ms(b)]. Then since b is continuous, ms converges necessarily to
m0(b) when s � 0. g

The mean used by Vervaat(18) to prove Theorem 1 was to first reason
on discrete time processes. As for Biane, (4) he proved Theorem 2 by ``ran-
domizing'' the lifetime of b and b(0) to get homogeneous Markov processes,
[see also Chaumont(5)]. In the following proof, thanks to Theorem 5, we
will be able to work directly with processes b and b(s).

Proof of Theorems 3 and 4. At first, note that the process b verifies
the hypothesis of Theorem 5.

Now, note that U is almost surely a right and left increase point of LbU

so it can be expressed as,

U=inf[t : LbU
t =VLbU

1 ] (2.3)

with V :=LbU
U �LbU

1 . One easily deduces from Theorem 5 that V is inde-
pendent of (b, bU ). Put W :=�1

0 1[bu�bU] du. Since W is a functional of
(b, bU ), then conditionally to W the r.v. V is independent of (b, bU ).
Moreover, since

bU =inf {x : |
1

0
1[bu�x] du>W=

then for almost every s # (0, 1), given W=s, (b, bU ) is distributed as
(b, Ms(b)), where Ms(b) has been defined in (1.4). Then it follows from
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(2.3) that for almost every s # (0, 1), given W=s, the bivariate r.v. (b, U)
is distributed as (b, ms(b)), where

ms(b) :=inf[t : LMs(b)
t =VLMs(b)

1 ]

It remains to note that since b has exchangeable increments, then V[b, U]
is a Brownian bridge independent of U. Moreover, we have W=A(V[b, U]).
Therefore, conditionally to W, U and V are uniformly distributed over
[0, 1], U is independent of V[b, U] and V is independent of b.

So, we proved that for almost every s # (0, 1), the law of V[b, ms(b)]
is the same as the law of b conditionally to A(b)=s. Moreover ms(b) is
uniformly distributed and is independent of V[b, ms(b)]. But, C[0, 1] being
endowed with the topology of the uniform convergence, by Lemma 1, the
map s [ V[b, ms(b)] is almost surely continuous at every fixed s. That
proves that there exists a weakly continuous version in s of the law of b
given A(b)=s. Theorem 4 is then proved. Theorem 3 for s # (0, 1) is a
direct consequence of Theorem 4. To get the cases s=0 and 1 in
Theorem 3 it suffices to note that by the second part of Lemma 1, the map
s [ V[b, ms(b)] is continuous at 0 and 1. Then by applying Theorem 4,
and letting s goes to 0 or 1, we recover Vervaat's Theorem and then Biane's
Theorem. g

Remark 1. From this proof, it appears that an important application
of Theorem 4 is the existence of a weakly continuous version in s of the
conditional law of b given A(b)=s. In particular the law of the normalized
Brownian excursion is the limit of the law of b(s) when s � 0.

Let us say that a process X with path in D[0, 1] has cyclically station-
ary increments (or fulfills the CSI property) if for every t # [0, 1], the pro-
cess V[X, t] has the same law as X. Note that the increments of X are not
necessarily exchangeable in the sense of Kallenberg.(13)

Then since the proof of Theorems 3 and 4 requires only the hypotheses
of Theorem 5 and the USI property of Brownian bridge, these theorems
also hold if X is any bridge with cyclically stationary increments such that
Lx

t (X ) satisfies the ``good'' conditions.
This discussion shows that any results of this section and the following

can be extended to processes which return to 0 at time 1 with cyclically
stationary increments under some additional conditions which can easily
be described. Therefore, we do not lose any generality by considering only
the Brownian bridge. That is why we restrict ourself to this case in the
present article.
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3. FURTHER RESULTS IN CONNECTION WITH
THE CSI PROPERTY

In this section we derive from Theorems 3 and 4 some other results in
connection with the CSI property. At first, note that Theorem 3 can be
reformulated as follows:

A0(b) is independent of the process V[b, U] (3.1)

We will know illustrate this result by describing some remarkable func-
tionals which are measurable with respect to the process V[b, U].

As mentioned in the introduction, the amplitude of the bridge over
[0, 1], sups�1 bs&infs�1 bs=M1(b)&M0(b) is independent of A(b). More
generally it can be checked that the process (Mu(b)&Mv(b), 0�u, v�1) is
a functional of V[b, U]. Then, by (3.1) it is independent of A(b). This
result extends the identity of Chung(7) and Kennedy(14) mentioned in this
introduction. We may go ahead in this extension by noticing that (Mu(b)&
Mv(b), 0�u, v�1) is a functional of the process (LMu

1 (b), 0�u�1). Indeed,
we have for every x # R,

|
x

&�
L y

1(b) dy=|
1

0
1[bt�x] dt

So, since s [ Ms(b) is the inverse of the function

x [ |
1

0
1[bt�x] dt

then by change of variables one gets

|
u

v
dt�LMt

1 (b)=mu(b)&Mv(b)

for every u and v in [0, 1]. Finally, note that

(LMu
1 (b), 0�u�1)=(LMu

1 (V[b, U]), 0�u�1)

so that this process is independent of A(b) by (3.1).
This remark leads to a result due to Biane:(4) Jeulin(12) proved that the

process ((1�2) LMu
1 (b), 0�u�1) is a normalized Brownian excursion. Applying

Vervaat's transformation, Biane noticed that ((1�2) LMu
1 (b(0)), 0�u�1) also is

a normalized Brownian excursion. He also proved [see Bertoin et al., (2)
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Thm. 5] that ((1�2) LMu
1 (b), 0�u�1) is independent of A(b). Applying

Jeulin's result and (3.1), we would say in our notations that for every s # [0, 1],
the process ((1�2) LMu

1 (b(s)), 0�u�1) is a normalized Brownian excursion.
Finally, by the same calculation as before, Yor(20) derived from Jeulin's

transformation the following identity in law:

(2Mu(b(0)), 0�u�1) =
(d ) \|

u

0

dv
b (0)

v

, 0�u�1+
Combining these results, we can state:

Corollary 1. For every s # [0, 1], we have the identity in law

(2Mu(b(s)), 0�u�1) =
(d ) \|

u

0

dv
b (0)

v

, 0�u�1+
Remark 2. For stable Le� vy processes with index : # (1, 2], it would

be interesting to study the process

((1�2) LMu
1 (b(s)), 0�u�1)

which is :-stable and continuous.

The following corollary is another direct consequence of (3.1). It
describes a transformation connecting the processes b(s) and b(t) which
essentially means that the result of Theorem 4 still holds conditionally to
A(b). Assume first that s # (0, 1). Then in the next statement the time
ms(b (t)) is defined with respect to the process b(t) as in (1.5). That is if V

is a uniformly distributed r.v. over [0, 1] independent of b(t) and if Lx
u(b(t))

stands for the local time in the sense of (2.1) at level x # R and time
u # [0, 1] of this process, then ms(b(t)) is defined by

ms(b (t)) :=inf[u : LMs
u (b(t))=VLMs

1 (b(t))]

If s=0 (resp. s=1) then ms(b(t)) is the time when b (t) reaches its minimum
(resp. maximum).

Corollary 2. Let s, t # [0, 1]. Then the process

V[b(t), ms(b(t))]

has the same law as b(s).
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Note that contrary to Theorem 4, the process V[b(t), ms(b(t))] is not
independent of the time ms(b(t)). Moreover, this time is not uniformly
distributed.

Proof. Let A(V[b, U]) be the time that V[b, U] spends under 0.
Then by Theorem 4 conditionally to A(V[b, U])=s, the process V[b, U]
has the same law as V(b, ms(b)) and that law is the law of b (s). Moreover,
conditionally to A(V[b, U])=s, the process V[b, U] is independent of
A(b) by (3.1). It remains to condition by A(b)=t to get the result. g

4. A PATH TRANSFORMATION PRESERVING THE
BROWNIAN LAW ON [0, 1]

Throughout this section B will be a Brownian motion with drift. In the
sequel, we fix s # (0, 1), the cases s=0 and s=1 having no special interest.
The time ms(B) will be defined as in (1.5) but with respect to the Brownian
motion on [0, 1]. That is, if V is a r.v. uniformly distributed over [0, 1],
independent of B then

ms(B) :=inf[t : LMs
t (B)=VLMs

1 (B)]

To simplify the notations, when no confusion is possible, the time ms(B)
will be denoted by ms .

We are going to describe a path transformation involving the time ms

and which preserves the law of B over the interval [0, 1]. One of the inter-
ests of the next construction is to explain the identity in law (1.6) stated in
this introduction. More precisely, we are going to prove that this identity
holds for Brownian motion over [0, 1], conditionally on B1=0. Put

m� s(B) :=sup [l�s : Bl=sup
u�s

Bu] and

m
�

1&s(B) :=inf[l�0 : Bs+l&Bs= inf
u�1&s

(Bs+u&Bs)]

Then we will show:

(Ms(B), ms(B)) =
(d )

(sup
u�s

Bu+ inf
u�1&s

(Bs+u&bs), m� s(B)+m
�

&s(B)) (4.1)

We already dealt with the discrete time case in Chaumont, (6) (that
is for random walks or more generally for chains with exchangeable
increments). The analogue of the time ms is then a measurable functional of
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the chain under consideration, which makes the problem easier. Let us also
mention that several partial pathwise explanations of the first part of the
identity (4.1) had already been given in Embrechts et al., (10) and Bertoin
et al.(2)

At first define the returned pre-ms process B(1) and the post-ms process
B(2) as follows:

B(1)=(B(ms&u)&Bms
, 0�u�ms)

B(2)=(B(ms+u)&Bms
, 0�u�1&ms)

Then for i=1, 2 let A&(i) and A+(i) be the times spent by B(i) under and
over 0, that is, for t # [0, 1]:

A&(i)
t =|

t

0
1[B u

(i)�0] du, and A+(i)
t =|

t

0
1[Bu

(i)>0] du

We also denote by :&(i) and :+(i) their right continuous inverses:

:&(1)
t =inf[u, A&(1)

u >t], t�A&(1)
ms

:+(1)
t =inf[u, A+(1)

u >t], t�A+(1)
ms

:&(2)
t =inf[u, A&(2)

u >t], t�A&(2)
&ms

:+(2)
t =inf[u, A+(2)

u >t], t�A+(2)
&ms

Let L(i) be the local time at 0 of the process B(i) defined in the sense of
(2.1), then from (Bu , 0�u�1) we construct the four following processes:

B&(1)
t =(B(1)& 1

2L(1))(:&(1)
t ), t�A&(1)

ms

B+(1)
t =(B(1)+ 1

2L(1))(:+(1)
t ), t�A+(1)

ms

B&(2)
t =(B(2)& 1

2L(2))(:&(2)
t ), t�A&(2)

&ms

B+(2)
t =(B(2)+ 1

2L(2))(:+(2)
t ), t�A+(2)

&ms

B&(i) (resp. (B+(i)) is obtained by juxtaposing the negative (resp. positive)
excursions of B(i) and then by subtracting (resp. adding) its local time at 0.
Now, we denote by R the return operator: if X is a path with lifetime `(X ),
then,

R(X )t=X`(X )&t&X`(X ) , t�`(X )
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We also denote by x the juxtaposition operator: if X $ is another path, then

(X x X $)t={Xt ,
X`(X )+X $t&`(X )

if t�`(X )
if `(X )<t�`(X $)

Then our transformation states as follows:

Theorem 6. The process

B$ :=R(B&(1)) x B&(2) x R(B+(1)) x B+(2) (4.2)

is a Brownian motion over [0, 1].

One deduces identity (4.1) from this theorem by noticing that,

sup
u�s

B$u+ inf
u�1&s

B$s+u&B$s=Ms(B), a.s. and (4.3)

m� s(B$)+m
�

1&s(B$)=ms(B), a.s. (4.4)

where

m� s(B$)=sup [l�s : B$l=sup
u�s

B$u], and

m
�

1&s(B$)=inf[l�0 : B$s+l&B$s= inf
u�1&s

(B$s+u&B$s)]

Indeed, on the one hand, one easily checks that the sum of the lifetimes of
R(B&(1)) and B&(2) is s, that is: A&(1)

ms
+A&(2)

1&ms
=s. On the other hand,

since B&(i), i=1, 2 are nonpositive processes and B+(i), i=1, 2 are non-
negative processes, then

sup
u�s

B$u=&B&(1)(A&(1)
ms

), and

inf
u�1&s

B$s+u&B$s=&B+(1)(A+(1)
ms

)

Now, it comes from the previous definitions that

B&(1)(A&(1)
ms

)=&Bms
1[Bms

�0]&(1�2) LBmsms
(4.5)

B+(1)(A+(1)
ms

)=&Bms
1[Bms

�0]+(1�2) LBmsms
(4.6)
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so that B&(1)(A&(1)
ms

)+B+(1)(A+(1)
ms

)=&Bms
. Moreover, note that Bms

=
Ms(B). Therefore (4.3) holds. We check (4.4) similarly: for the same earlier
reasons, we have

m� s(B$)=A&(1)
ms

, and m
�

1&s(B$)=A+(1)
ms

(4.7)

Then, it is obvious that ms=A&(1)
ms

+A+(1)
ms

and (4.4) follows.

Remark 3. By the straightforward identity B$1=B1 , a.s., restricted to
[B1=0], we can extend Theorem 6 and so identity (4.1) to Brownian
bridge. Then identity (1.6) holds. In that particular case, we already
noticed in Chaumont(6) that for every s # [0, 1], the sum m� s(b)+m

�
1&s(b)

is uniformly distributed over [0, 1].

The next corollary completes identity (4.1).

Corollary 3. Let M +
s (B) and M &

s (B) be the positive and the
negative parts of Ms(B). There identities (4.5) and (4.6) imply that the r.v.'s
M+

s (B)+(1�2) LMs
ms

(B) and M &
s (B)+(1�2) LMs

ms
(B) are independent and

M +
s (B)+(1�2) LMs

ms
(B) =

(d )
sup
t�s

Bt ,

M &
s (B)+(1�2) LMs

ms
(B) =

(d )
& inf

t�1&s
(Bs+t&Bs)

On the other hand, by (4.7) we deduce that the time spent by B under
Ms(B) up to the time ms , (that is A&(1)

ms
), is independent of A+(1)

ms
, the

time it spends over Ms(B) up to ms . These times verity the identities:
A&(1)

ms
=
(d ) m� s(B) and A+(1)

ms
=
(d ) m

�
s(B).

If we consider the Brownian bridge instead of the Brownian motion in
this corollary then we lose the independence. However, the identities in law
are still true.

Proof of Theorem 6. This proof divides into two Lemmas. The first
one is an extension of Denisov's path decomposition: the returned pre-m0

process and the post-m0 process are independent meanders conditionally to
their lifetime, see Denisov.(9) It is clear that we can extend what we did in
Section 2 to show that for every t, there exists a continuous version in u of
the Brownian law over the interval [0, t] given � t

0 1[Bv�0] dv=u. For
t, u # [0, 1], u�t, denote by Pt, u this version. Then by splitting B at time
ms we get Lemma 2.
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Lemma 2. Conditionally to ms=t, t#[0, 1] and A&(1)
ms

=u, u # [0, s7 t]
the processes B(1) and B(2) are independent, B(1) has law Pt, u and B(2) has
law P1&t, s&u.

Proof. Let U be a uniformly distributed r.v. over [0, 1] independent
of B and define

B(1), U=(B(U&u)&BU , 0�u�U)

B(2), U=(B(U+u)&BU , 0�u�1&U)

Then, at first, it is obvious that conditionally to U=t, B(1), U and B(2), U are
independent, Brownian motions over [0, t] and [0, 1&t], respectively.
Moreover note that given U=t, �1

0 1[Bv�BU] dv=s and A&(1)
ms

=u, the law
of the process (Bv , 0�v�1) is the same as given A&(2)

1&ms
=s&u and

A&(1)
ms

=u. Since A&(1)
ms

is a functional of B&(1) and A&(2)
1&ms

is a functional of
B&(2), then given A&(2)

1&ms
=s&u and A&(1)

ms
=u, B(1), U and B(2), U are inde-

pendent.
Now, we can check, as in the proof of Theorems 3 and 4, that condi-

tionally to W=�1
0 1[Bv�BU] dv=s, (B, U) is distributed as (B, ms(B)). Then

given �1
0 1[Bv�BU] dv=s, the pair of processes (B(1), U, B(2), U) is distributed

as (B(1), B(2)).
Finally, we conclude that conditionally to U=t, A&(2)

1&ms
=s&u and

A&(1)
ms

=u, the process (Bv , 0�v�1) has the same as conditionally to
ms=t and A&(1)

ms
=u. Therefore, from before, conditionally to ms=t and

A&(1)
ms

=u, the process B(1), U has law Pt, u and the process B(2), U has law
P1&t, s&u. g

From here on, we denote by ,+ the transformation which maps X (i)

onto X +(i), i=1, 2 and by ,& the transformation which maps X (i) onto
X &(i), i=1, 2. More generally if X is a path with lifetime ` which admits
a local time Lx

t in the sense of (2.1), then

,+(X )t=(X+(1�2) L0)(:+
t ), t�A+

` (4.8)

,&(X )t=(X&(1�2) L0)(:&
t ), t�A&

` (4.9)

with A+�&
t =� t

0 1[Xu>��0] du, and :+�&
t being their right continuous inver-

ses. Denote also ,(1)(X ) and ,(2)(X ) the pre-minimum part and the post-
minimum part of X, that is

,(1)(X )t=Xm0(X )&t&Xm0(X ) , t�m0(X ) (4.10)

,(2)(X )t=Xm0(X )+t&Xm0(X ) , t�`&m0(X ) (4.11)
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Extending a discrete time Feller's result, Bertoin(1) proved that

Lemma 3 (Bertoin). Let Bt :=(Bs , 0�s�t). Then boor every t�0,
the pairs of processes (,(1)(Bt), ,(2)(Bt)) and (&,&(Bt), ,+(Bt)) have the
same law.

Now, according to Lemmas 2 and 3, the law of the pair of processes
(R(B&(1)), R(B+(1))) conditionally to A&(1)

ms
=u and ms=t is the same as

the law of the pair of processes (R(&,(1)(Bt)), R(,(2)(Bt))) conditionally to
m0(Bt)=u. Similarly, the law of (B&(2), B+(2)) conditionally to A&(1)

ms
=u

and ms=t is the same as the law of (&,(1)(Bt), ,(2)(Bt)) conditionally to
m0(Bt)=s&u.

By both scaling property and return time property of Brownian
motion, the process R(&,(1)(Bt)) given m0(Bt)=u and the process
(Bv , v�m1) given m1=u have the same law. This law does not depend
on t, (t�u). So, we have:

(i) given ms=t and A&(1)
ms

=u, R(B&(1)) has the same law as
(Bv , v�m1) given m1=u.

By the same arguments, one checks that given ms=t and A&(1)
ms

=u:

(ii) R(B+(1)) has the same law as (Bv , v�m0) given m0=t&u,

(iii) B&(2) has the same law as (Bm1+v&Bm1
, v�s&m1) given m1=u,

(iv) B+(2) has the same law as (Bm0+v&Bm0
, v�1&s&m0) given

m0=t&u.

By closing up together the processes in (i)�(iv) as in (4.2) and by
integrating over u and t, one get a Brownian motion over [0, 1], according
to Lemma 2 for s=1 and s=0. This ends the proof of Theorem 6. g

5. A PATHWISE CONSTRUCTION OF b(s)

We conclude this work with a pathwise construction of the process b(s)

from a Brownian bridge b. Except for the cases s=0 or s=1, the transfor-
mation of Theorem 4 is not a measurable functional of the process b, since
U is independent of it. The construction we are going to present here is not
very explicit but the aim of this section is to show that it is possible to get
a process with the law of b(s) only from the path of a standard Brownian
bridge. Since the process

((g)&1�2 Bgt , 0�t�1)

274 Chaumont



(where g=sup [t�1 : Bt=0]) is a Brownian bridge, then it is possible to
construct a process with the law of b(s) only from the path of the Brownian
motion over [0, 1]. Note also that when s=0, another means to construct
the path of b(0) from B is

((d& g)&1�2 Bg+(d& g) t , 0�t�1)

(where d=inf[t�1 : Bt=]) but we do not have any equivalent of this
construction for any s # (0, 1).

In the sequel, we will refer to the results and the notations of the pre-
vious section but with b replacing B. The crucial point to establish this con-
struction is that the transformation in Theorem 6 is reversible. Indeed, the
processes ,+(b(i)) and ,&(b(i)), i=1, 2 being given, it impossible to recover
the initial Brownian bridge b. This fact can be derived from Bertoin(1) or
Revuz and Yor, (17) [Chap. XIII, Prop. 3.5]:

For instance, we are going to explain roughly how to recover b(1) from

,&(b(1))=(b(1)& 1
2L(1))(:&(1)

t ), t�A&(1)
ms

,+(b(1))=(b(1)+ 1
2L(1))(:+(1)

t ), t�A+(1)
ms

(Recall that b&(1)=,&(b(1)) and b+(1)=,+(b(1))).
Put g+�& :=sup [t : b(1)(:+�&(1)

t )=0], then it comes from this defini-
tions, by returning the time and applying the Skohorod's reflection lemma
that

L(1)(:&(1)
t )={&2 sup[b&(1)

u : t�u�A&(1)
ms

]
L (1)

ms

0�t�g&

g&�t�A&(1)
ms

L(1)(:+(1)
t )={2 inf[b+(1)

u : t�u�A+(1)
ms

]
L (1)

ms

0�t�g+

g+�t�A+(1)
ms

Moreover, we easily check that L (1)
ms

=b+(1)(A+(1)
ms

)&b&(1)(A&(1)
ms

), (see the
discussion after Theorem 6). Therefore one can construct (b(1)(:&(1)),
L(1)(:&(1))) and (b(1)(:+(1)), L(1)(:+(1))) from the processes b&(1) and b+(1).
Finally, we construct b(1) by closing up together the excursions of b(1)(:&(1))
and b(1)(:+(1)) in a classical way, see Bertoin(1) or Revuz and Yor.(17)

Now, let s # (0, 1). Then we start with the process b$ obtained from b
in Theorem 6. Recall that

m� s(b$)=sup[l�s : b$l=sup
u�s

b$u], and

m
�

1&s(b$)=inf[l�0 : b$s+l&b$s= inf
u�1&s

b$s+u&b$s]
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We split b$ in four parts as follows:

b$ (i)
t =b$t , t�m� s

b$ ( j)
t =b$m� s+t&b$m� s

, t�s&m� s

b$ (k)
t =b$s+t&b$s , t�m

�
1&s

b$ (l )
t =b$s+m

�
1&s+t&b$s+m

�
1&s

, t�1&s&m
�

1&s

On the one hand, b$(i) and b$( j) are pre-maximum and post-maximum parts
of the process (b$t , 0�t�s) and on the other hand, b$(k) and b$(l ) are pre-
minimum and post-minimum parts of the process (b$s+t&b$s , 0�t�1&s).
According to this discussion, we can reconstruct b(1) and b(2) from b$. These
are the processes which verify:

(R(,&(b(1))), R(,+(b(1))))=(b$ (i), b$(k)) and

(,&(b(2)), ,+(b(2)))=(b$ ( j), b$(l ))

Finally, call 8(s) the measurable transformation which maps b$ onto the
process

b(2) x R(b(1))

that is 8(s)(b$) :=b(2) x R(b (1)). Then it comes directly from the definition
of b(1) and b(2) and Theorem 4 that 8 (s)(b$) has the same law as b(s). So,
we can state

Theorem 7. The process 8(s)(b) has the law of a Brownian bridge
conditioned to spend a time equal to s under 0.
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