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Abstract

We consider some special classes of Lévy processes with no gaussian component whose Lévy measure
is of the type π(dx) = eγ xν(ex

−1) dx , where ν is the density of the stable Lévy measure and γ is a positive
parameter which depends on its characteristics. These processes were introduced in [M. E. Caballero,
L. Chaumont, Conditioned stable Lévy processes and the Lamperti representation, J. Appl. Probab. 43
(2006) 967–983] as the underlying Lévy processes in the Lamperti representation of conditioned stable
Lévy processes. In this paper, we compute explicitly the law of these Lévy processes at their first exit
time from a finite or semi-finite interval, the law of their exponential functional and the first hitting time
probability of a pair of points.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years there has been a general recognition that Lévy processes play an ever more
important role in various domains of applied probability theory such as financial mathematics,
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insurance risk, queueing theory, statistical physics or mathematical biology. In many instances
there is a need for explicit examples of Lévy processes where tractable mathematical expressions
in terms of the characteristics of the underlying Lévy process may be used for the purpose of
numerical simulation. Depending on the problem at hand, particular functionals are involved
such as the first entrance times and overshoot distributions.

In this paper, we exhibit some special classes of Lévy processes for which we can compute
explicitly the law of the position at the first exit time of an interval, the two point-hitting
probability and the exponential functional. Moreover, two new, concrete examples of scale
functions for spectrally one-sided processes will fall out of our analysis.

Known examples of overshoot distributions concern essentially (some particular classes) of
strictly stable processes and processes whose jumps are of a compound Poisson nature with
exponential jumps (or slightly more generally whose jump distribution has a rational Fourier
transform). For example, let us state the solution of the two-sided exit problem for completely
asymmetric stable processes. In that case we take (X,Px ), x ∈ R, to be a spectrally positive
Lévy stable process with index α ∈ (1, 2) starting from x . Let σ+a = inf{t > 0 : X t > a} and
σ−0 = inf{t > 0 : X t < 0}. It is known (cf. Rogozin [27]) that for y > 0,

Px

(
Xσ+a − a ∈ dy; σ+a < σ−0

)
=

sinπ(α − 1)x
π

(
a − x

y

)α−1 dy

(y + a)(y + a − x)
.

For the case of processes whose jumps are of a compound Poisson nature with exponential jumps,
the overshoot distribution is again exponentially distributed; see Kou and Wang [18]. See also
Lewis and Mordecki [21] and Pistorius [24] for the more general case of a jump distribution with
a rational Fourier transform and for which the overshoot distribution belongs to the same class
as the respective jump distribution of the underlying Lévy process.

The exponential functional of a Lévy process, ξ , i.e.∫
∞

0
exp{−ξs} ds,

also appears in various aspects of probability theory, such as: self-similar Markov processes,
random processes in random environment, fragmentation processes, mathematical finance,
Brownian motion on hyperbolic spaces, to name but a few. In general, the distribution of
exponential functionals can be rather complicated. Nonetheless, it is known for the case that
ξ is either: a standard Poisson processes, Brownian motion with drift and a particular class of
spectrally negative Lévy processes of bounded variation whose Laplace exponent is of the form

ψ(q) =
q(q + 1− a)

b + q
, q ≥ 0,

where 0 < a < 1 < a + b. See Bertoin and Yor [6] for an overview on this topic.
The class of Lévy processes that we consider in this paper do not fulfill a scaling property and

may have two-sided jumps. Moreover, they have no Gaussian component and their Lévy measure
is of the type π(dx) = eγ xν(ex

− 1) dx , where ν is the density of the stable Lévy measure with
index α ∈ (0, 2) and γ is a positive parameter which depends on its characteristics. It is not
difficult to see that the latter Lévy measure has a density which is asymptotically equivalent to
that of an α-stable process for small |x | and has exponential decay for large |x |. This implies
that such processes have paths which are of bounded or unbounded variation accordingly as
α ∈ (0, 1) and α ∈ [1, 2) respectively. Further, they also have exponential moments. Special
families of tempered stable processes, also known as CGMY processes, are classes of Lévy
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processes with similar properties to the aforementioned which have enjoyed much exposure in
the mathematical finance literature as instruments for modelling risky assets. See for example
Carr et al. [11], Boyarchenko and Levendorskii [8], Cont [14] or Schoutens [29]. Although the
Lévy processes presented in this paper are not tempered stable processes, it is intriguing to note
that they possess properties which have proved to be popular for financial models but now with
the additional luxury that they come with a number of explicit fluctuation identities.

We conclude the introduction with a brief outline of the remainder of the paper. The next
section introduces the classes of processes which are concerned in this study. In Section 3, we
give the law of the position at the first exit time from a (semi-finite) interval. In Section 4 we
compute explicitly the two-point hitting probability and in Section 5, we study the law of the
exponential functional of Lévy–Lamperti processes.

2. Preliminaries on Lévy–Lamperti processes

Denote by D the Skorokhod space of R-valued càdlàg paths and by X the canonical process
of the coordinates on D. Positive (R+-valued), self-similar Markov processes (X,Px ), x > 0,
are strong Markov processes with paths in D, which fulfill a scaling property, i.e. there exists a
constant α > 0 such that for any b > 0:

The law of (bXb−α t , t ≥ 0) under Px is Pbx . (2.1)

We shall refer to these processes as pssMp. According to Lamperti [20], any pssMp up to its first
hitting time of 0 may be expressed as the exponential of a Lévy process, time changed by the
inverse of its exponential functional. More formally, let (X,Px ) be a pssMp with index α > 0,
starting from x > 0, set

S = inf{t > 0 : X t = 0}

and write the canonical process X in the following form:

X t = x exp
{
ξτ(t x−α)

}
0 ≤ t < S, (2.2)

where for t < S,

τ(t) = inf
{

s ≥ 0 :
∫ s

0
exp {αξu} du ≥ t

}
.

Then under Px , ξ = (ξt , t ≥ 0) is a Lévy process started from 0 whose law does not depend on
x > 0 and such that:

(i) if Px (S = +∞) = 1, then ξ has an infinite lifetime and lim supt→+∞ ξt = +∞, Px -a.s.,
(ii) if Px (S < +∞, X (S−) = 0) = 1, then ξ has an infinite lifetime and limt→∞ ξt = −∞,

Px -a.s.,
(iii) if Px (S < +∞, X (S−) > 0) = 1, then ξ is killed at an independent exponentially

distributed random time with parameter λ > 0.

As mentioned in [20], the probabilities Px (S = +∞),Px (S < +∞, X (S−) = 0) and
Px (S < +∞, X (S−) > 0) are 0 or 1 independently of x , so that the three classes presented
above are exhaustive. Moreover, for any t <

∫
∞

0 exp{αξs} ds,

τ(t) =
∫ xα t

0

ds

(Xs)α
, Px − a.s. (2.3)
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Therefore (2.2) is invertible and yields a one-to-one relation between the class of pssMp’s killed
at time S and the one of Lévy processes.

Now let us consider three particular classes of pssMp. (We refer to [10] for more details in
what follows.) The first one is identified as a stable Lévy processes killed when it first exits from
the positive half-line. In particular, if Px is the law of a stable Lévy process with index α (or
α-stable process for short) initiated from x > 0 with α ∈ (0, 2], then with T = inf{t : X t ≤ 0},
under Px , the process

X t1{t<T }

is a pssMp which satisfies condition (ii) if it has no negative jumps or (iii) if it has negative
jumps. We call ξ∗ the Lévy process (with finite or infinite lifetime) resulting from the Lamperti
representation of the killed stable process. The characteristic exponent of ξ∗ has been computed
in [10] and is given by

Φ∗(λ) = ia∗λ+
∫
R
[eiλx
− 1− iλ(ex

− 1)1{|ex−1|<1}]π
∗(x) dx − c−α

−1, λ ∈ R, (2.4)

where a∗ is a constant,

π∗(x) =
c+ex

(ex − 1)α+1 1{x>0} +
c−ex

(1− ex )α+1 1{x<0},

and c−, c+ are nonnegative constants such that c− + c+ > 0. Note that the Lévy measure of ξ∗

satisfies π∗(x) = exν(ex
− 1), where ν is the density of the stable Lévy measure with index α

and symmetry parameters c− and c+.
The second class is that of stable processes conditioned to stay positive. (See for instance

in [12] for an overview of such processes.) Processes in this class are the result of a Doob h-
transforming stable processes killed on exiting (0,∞) with h(x) = xαρ and ρ = P0(X1 < 0).
More precisely, h is an invariant function for the killed process mentioned above, (X t1{t<T },Px ),
and the law P↑x defined on each σ -field Ft generated by the canonical process up to time t by

dP↑x
dPx

∣∣∣∣∣
Ft

=
Xαρt

xαρ
1{t<T } (2.5)

is that of a pssMp which drifts toward +∞ (in particular it satisfies condition (i)). Then the
underlying Lévy process, which will be denoted by ξ↑, is such that

lim
t→+∞

ξ
↑

t = +∞, a.s.,

and from [10] its characteristic exponent is

Φ↑(λ) = ia↑λ+
∫
R
[eiλx
− 1− iλ(ex

− 1)1{|ex−1|<1}]π
↑(x) dx, λ ∈ R, (2.6)

where a↑ is a real constant and

π↑(x) =
c+e(αρ+1)x

(ex − 1)α+1 1{x>0} +
c−e(αρ+1)x

(1− ex )α+1 1{x<0}.

The third class of pssMp that we will consider is that of stable processes conditioned to hit 0
continuously. Processes in this class are again defined as a Doob h-transform with respect to the
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function h′(x) = αρxαρ−1 which is excessive for the killed process (X t1{t<T },Px ). Its law P↓x
which is defined on each σ -field Ft by

dP↓x
dPx

∣∣∣∣∣
Ft

=
Xαρ−1

t

xαρ−1 1{t≤T } (2.7)

is that of a pssMp who hits 0 in a continuous way, i.e. (X,P↓x ) satisfies condition (ii). Let ξ↓ by
the underlying Lévy process in the Lamperti representation of this process, then

lim
t→+∞

ξ
↓

t = −∞ a.s.,

and the characteristic exponent of ξ↓ is given by

Φ↓(λ) = ia↓λ+
∫
R
[eiλx
− 1− iλ(ex

− 1)1{|ex−1|<1}]π
↓(x) dx, λ ∈ R, (2.8)

where a↓ is a constant and

π↓(x) =
c+eαρx

(ex − 1)α+1 1{x>0} +
c−eαρx

(1− ex )α+1 1{x<0}.

Note that the constants a∗, a↑ and a↓ are computed explicitly in [10] in terms of α, ρ, c− and c+.
Actually the process ξ↓ corresponds to ξ↑ conditioned to drift toward−∞ (or equivalently ξ↑ is
ξ↓ conditioned to drift to +∞). We will sometime use this relationship which is stated in a more
formal way in the next proposition. In what follows, P will be a reference probability measure
on D under which ξ∗, ξ↑ and ξ↓ are Lévy processes whose respective laws are described above.

Proposition 1. For every t ≥ 0, and every bounded measurable function f ,

E[ f (ξ↑t )] = E[exp(ξ↓t ) f (ξ↓t )].

In particular, processes −ξ↑ and ξ↓ satisfy Cramer’s condition: E(exp−ξ↑1 ) = 1 and

E(exp ξ↓1 ) = 1.

Proof. Let f be as in the statement. From (2.5) and (2.7), we deduce that for every P↓x -a.s. finite
(Fu)-stopping time.,

xE↑x [ f (XU )] = E↓x [XU f (XU )]. (2.9)

Let t ≥ 0. By applying (2.9) to the (Fu)-stopping time

xα inf {u : τ(u) > t} ,

which is P↓x -a.s. finite, and using (2.2) (note that τ(u) is continuous and increasing), we obtain

E[ f (ξ↑t )] = E[exp(ξ↓t ) f (ξ↓t )],

which is the desired result. �

We refer to Rivero [25], IV.6.1 for a similar discussion on conditioned stable processes
considered as pssMp. In what follows we call ξ∗, ξ↑ and ξ↓ the Lévy–Lamperti processes. We
now compute the law of some of their functionals.
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3. Entrance laws for Lévy–Lamperti processes: Intervals

In this section, by studying the two-sided exit problems for ξ↑, ξ∗ and ξ↓, we shall obtain
a variety of new identities including the identification of two new scale functions in the case of
one-sided jumps.

To this end, we shall start with a generic result pertaining to any positive self-similar Markov
process (X,Px ), for x > 0. We denote by ξ the Lévy process starting from 0 associated to X
through the Lamperti transformation (2.2) with reference measure P on D. For any y ∈ R let

T+y = inf{t : ξt ≥ y} and T−y = inf{t : ξt ≤ y},

and for any y > 0 let

σ+y = inf{t : X t ≥ y} and σ−y = inf{t : X t ≤ y}.

Lemma 1. Fix −∞ < v < 0 < u <∞. Suppose that A is any interval in [u,∞) and B is any
interval in (−∞, v]. Then,

P
(
ξT+u
∈ A; T+u < T−v

)
= P1

(
Xσ+eu
∈ eA
; σ+eu < σ−ev

)
and

P
(
ξT−v
∈ B; T+u > T−v

)
= P1

(
Xσ−ev
∈ eB
; σ+eu > σ−ev

)
.

The proof is a straightforward consequence of the Lamperti representation (2.2) and is left as
an exercise. Although somewhat obvious, this lemma indicates that for the three processes ξ↑, ξ∗

and ξ↓, we need to understand how, respectively, an α-stable process conditioned to stay positive,
an α-stable process killed when it exits the positive half-line and an α-stable process conditioned
to hit the origin continuously, exit a positive interval around x > 0. Fortunately this is possible
thanks to a result of Rogozin [27] who established the following for α-stable processes.

Theorem 1 (Rogozin [27]). Suppose that (X,Px ) is an α-stable process, initiated from x, which
has two-sided jumps. Denoting ρ = P0(X1 < 0) we have for a > 0 and x ∈ (0, a),

Px

(
Xσ+a − a ∈ dy; σ+a < σ−0

)
=

sinπα(1− ρ)
π

(a − x)α(1−ρ)xαρ y−α(1−ρ)(y + a)−αρ(y + a − x)−1dy.

Note that an expression for Px (−Xσ−0
∈ dy; σ+a > σ−0 ) can be derived from the above

expression by replacing x by a − x and ρ by 1− ρ.
In what follows, with an abuse of notation, we will denote by T+y and T−y for the first passage

times above and below y ∈ R, respectively, of the processes ξ↑, ξ∗ or ξ↓ depending on the case
that we are studying.

We now proceed to split the remainder of this section into three subsections dealing with the
two-sided exit problem and its ramifications for the three processes ξ↑, ξ∗ and ξ↓ respectively.

3.1. Calculations for ξ↑

The two-sided exit problem for ξ↑ can be obtained from Lemma 1 and Theorem 1 as follows.
We give the case for two-sided jumps. Note that this is more for convenience than a restriction.
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By taking limits as α(1 − ρ)→ 1 or αρ → 1 in the given expressions we deduce identities for
the case that ξ↑ is spectrally negative and spectrally positive respectively. Note that necessarily
in the spectrally one-sided case α ∈ (1, 2).

Theorem 2. Fix θ ≥ 0 and −∞ < v < 0 < u <∞.

P
(
ξ
↑

T+u
− u ∈ dθ; T+u < T−v

)
=

sinπα(1− ρ)
π

(eu
− 1)α(1−ρ)(1− ev)αρ

× (eu+θ )αρ+1(eu+θ
− eu)−α(1−ρ)(eu+θ

− ev)−αρ(eu+θ
− 1)−1dθ

and

P
(
v − ξ

↑

T−v
∈ dθ; T+u > T−v

)
=

sinπαρ
π

(1− ev)αρ(eu
− 1)α(1−ρ)

× (ev−θ )αρ+1(ev − ev−θ )−αρ(eu
− ev−θ )−α(1−ρ)(1− ev−θ )−1dθ.

Proof. Recall that (X,P1) denotes an α-stable process initiated from 1 and that (X,P↑1 ) is an
α-stable process conditioned to stay positive initiated from 1. From Lemma 1, we have for θ ≥ 0

P
(
ξ
↑

T+u
≤ u + θ; T+u < T−v

)
= P↑1

(
Xσ+eu
∈ [eu, eu+θ

]; σ+eu < σ−ev

)
=

∫ eu+θ
−eu

0
(y + eu)αρP1

(
Xσ+eu
− eu
∈ dy; σ+eu < σ−ev

)
=

∫ eu+θ
−eu

0
(y + eu)αρP1−ev

(
Xσ+

(eu−ev)
− (eu

− ev) ∈ dy; σ+(eu−ev) < σ−0

)
=

sinπα(1− ρ)
π

(eu
− 1)α(1−ρ)(1− ev)αρ

×

∫ eu+θ
−eu

0
(y + eu)αρ y−α(1−ρ)(y + eu

− ev)−αρ(y + eu
− 1)−1dy

from which the first part of the theorem follows.
The second part of the theorem can be proved in a similar way. Indeed for θ ≥ 0

P
(
ξ
↑

T−v
≥ v − θ; T+u > T−v

)
= P↑1

(
Xσ−ev
∈ [ev−θ , ev]; σ+eu > σ−ev

)
=

∫ ev−ev−θ

0
(ev − y)αρP1

(
ev − Xσ−ev

∈ dy; σ+eu > σ−ev

)
=

∫ ev−ev−θ

0
(ev − y)αρP1−ev

(
−Xσ−0

∈ dy; σ+(eu−ev) > σ−0

)
=

sinπαρ
π

(1− ev)αρ(eu
− 1)α(1−ρ)
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×

∫ ev−ev−θ

0
(ev − y)αρ y−αρ(y + eu

− ev)−α(1−ρ)(y + 1− ev)−1dy.

This completes the proof. �

Note that since the process (X,P↑x ), x > 0, is an α-stable process conditioned to stay positive,
it follows that, in the case that there are two-sided jumps, there is no creeping out of the interval
(v, u) with probability one. That is to say,

P
(
ξ
↑

T+u
= u; T+u < T−v

)
= P

(
ξ
↑

T−v
= v; T+u > T−v

)
= 0.

Taking v ↓ −∞ in the first part of the above theorem and u ↑ ∞ in the second part we obtain
the solution to the one-sided exit problem as follows.

Corollary 1. Fix θ ≥ 0 and −∞ < v < 0 < u <∞.

P
(
ξ
↑

T+u
− u ∈ dθ, T+u <∞

)
=

sinπα(1− ρ)
π

(eu
− 1)α(1−ρ)eu+θ (eu+θ

− eu)−α(1−ρ)(eu+θ
− 1)−1dθ

and

P
(
v − ξ

↑

T−v
∈ dθ; T−v <∞

)
=

sinπαρ
π

(1− ev)αρ(ev−θ )αρ+1(ev − ev−θ )−αρ(1− ev−θ )−1dθ.

To give some credibility to these identities, and for future reference, let us check that we may
recover the identity in Caballero and Chaumont [10] for the law of the minimum.

Corollary 2. Let ξ↑
∞
= inft≥0 ξ

↑

t . For z ≥ 0,

P
(
−ξ↑
∞
≤ z

)
= (1− e−z)αρ .

Proof. The required probability may be identified as equal to P(T−−z = ∞) and hence, since
there is no probability of creeping over the level −z,

P
(
−ξ↑
∞
≤ z

)
= 1−

sinπαρ
π

(1− e−z)αρ
∫
∞

0
(e−z−θ )αρ+1(e−z

− e−z−θ )−αρ(1− e−z−θ )−1dθ

= 1−
sinπαρ
π

(1− e−z)αρ
∫
∞

0
(e−θ )αρ+1(1− e−θ )−αρ(ez

− e−θ )−1dθ.

Next note that the integral on the right-hand side satisfies∫
∞

0
(e−θ )αρ+1(1− e−θ )−αρ(ez

− e−θ )−1dθ

=

∫
∞

1

e−z

y(y − 1)αρ(y − e−z)
dy
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=

∫
∞

0

e−z

(u + 1)uαρ(u + 1− e−z)
du

=

∫
∞

0

{
1

uαρ(u + 1− e−z)
−

1
(u + 1)uαρ

}
du

= (1− e−z)−αρ
∫
∞

0

1
vαρ(v + 1)

dv −
∫
∞

0

1
(u + 1)uαρ

du

= [(1− e−z)−αρ − 1]
∫
∞

0

1
(u + 1)uαρ

du (3.10)

where in the first equality we have applied the change of variable y = eθ , in the second equality
y = u + 1 and in the fourth equality u = (1 − e−z)v. Note also that by writing w = (u + 1)−1

we also discover that∫
∞

0

1
(u + 1)uαρ

du =
∫ 1

0
(1− w)−αρwαρ−1dw = Γ (1− αρ)Γ (αρ) =

π

sinπαρ
. (3.11)

In conclusion we deduce that∫
∞

0
(e−θ )αρ+1(1− e−θ )−αρ(ez

− e−θ )−1dθ = [(1− e−z)−αρ − 1]
π

sinπαρ

and hence the required identity holds. �

Finally, to complete this subsection, when (X,P↑1 ) is a spectrally negative process we also
gain some information concerning the scale function, W↑,n, of the underlying Lévy process,
denoted here by ξ↑,n. Specifically, in that case it is known that 1− ρ = 1/α (and α ∈ (1, 2)) and
that P(−ξ↑,n

∞
≤ x) = mW↑,n(x), where m = E(ξ↑,n1 ) (see for instance Theorem 8.1 in [19] or

identity (9.4.3) in [15]). This implies

W↑,n(x) =
1
m
(1− e−x )αρ =

1
m
(1− e−x )α−1.

Recall that for a given spectrally negative Lévy process it is known that the Laplace transform of
the scale function is given by the inverse of the associated Laplace exponent (see for instance
Theorem VII.8 in Bertoin [2]). We can therefore compute the Laplace exponent ψ↑(θ) =

log E(eθξ
↑,n
1 ) for θ ≥ 0, as follows:

ψ↑(θ) = m

(∫
∞

0
e−θx (1− e−x )α−1dx

)−1

= m

(∫ 1

0
uθ−1(1− u)α−1du

)−1

= m
Γ (θ + α)
Γ (θ)Γ (α)

.

Knowledge of the scale function allow us to write a stronger result than the one given in
Corollary 1 as follows.

Lemma 2. Let ξ↑,n
t
= inf0≤s≤t ξ

↑,n
s . For v < 0, θ ≥ 0, φ ≥ η and η ∈ [0,−v] we have

P
(
v − ξ

↑,n
T−v
∈ dθ, ξ↑,n

T−v −
− v ∈ dφ, ξ↑,n

T−v −
− v ∈ dη

)
= K−1 (1− ev+η)α−2(ev+η)(e−θ−φ)α(1− e−θ−φ)−1−αdθdφdη,
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where

K =
e(α−2)v

α(α − 1)

∫ e−v

1

(e−v − y)

y(y − 1)α−1 dy −
(1− ev)α−1

α(α − 1)
π

sinπ(α − 1)
.

Proof. First recall that the process ξ↑,n drifts towards+∞ a.s. Taking this into account, we have
from Example 8 of Doney and Kyprianou [16] that the required probability is proportional to

W↑,n(−v − dη)π↑(−θ − φ)dθdφ.

Hence the triple law of interest has a density with respect to dθdφdη which is proportional to

(1− ev+η)α−2(ev+η)(e−θ−φ)α(1− e−θ−φ)−1−α.

For convenience let us write the constant of proportionality as K−1. As (X,P↑1 ) is derived
from a spectrally negative stable process, it cannot creep downwards (cf. p175 of Bertoin [2]).
This allows us to compute the unknown constant via the total probability formula and after a
straightforward computation, we have

K =
∫
∞

0

∫
∞

0

∫
−v

0
(1− ev+η)α−2(ev+η)(e−θ−φ)α(1− e−θ−φ)−1−αdθdφdη

=
e(α−2)v

α(α − 1)

∫ e−v

1

(e−v − y)

y(y − 1)α−1 dy −
(1− ev)α−1

α(α − 1)
π

sinπ(α − 1)

and the proof is complete. �

3.2. Calculations for ξ∗

Henceforth we shall assume that (X,Px ) is an α-stable process killed on first exit of the
positive half-line starting from x > 0. As before, unless otherwise stated, we shall assume that
there are two-sided jumps, moreover, spectrally one-sided results may be considered as limiting
cases of the two-sided jumps case. We start with the two- and one-sided exit problems with the
latter as a limiting case of the former. We offer no proof as the calculations are essentially the
same.

Theorem 3. Fix θ ≥ 0 and −∞ < v < 0 < u <∞.

P
(
ξ∗

T+u
− u ∈ dθ; T+u < T−v

)
=

sinπα(1− ρ)
π

(eu
− 1)α(1−ρ)(1− ev)αρ

× (eu+θ )(eu+θ
− eu)−α(1−ρ)(eu+θ

− ev)−αρ(eu+θ
− 1)−1dθ

and

P
(
v − ξ∗

T−v
∈ dθ; T+u > T−v

)
=

sinπαρ
π

(1− ev)αρ(eu
− 1)α(1−ρ)

× (ev−θ )(ev − ev−θ )−αρ(eu
− ev−θ )−α(1−ρ)(1− ev−θ )−1dθ.
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Corollary 3. Fix θ ≥ 0 and −∞ < v < 0 < u <∞.

P(ξ∗
T+u
− u ∈ dθ, T+u <∞)

=
sinπα(1− ρ)

π
(eu
− 1)α(1−ρ)(eu+θ )1−αρ(eu+θ

− eu)−α(1−ρ)(eu+θ
− 1)−1dθ

and

P
(
v − ξ∗

T−v
∈ dθ; T−v <∞

)
=

sinπαρ
π

(1− ev)αρ(ev−θ )(ev − ev−θ )−αρ(1− ev−θ )−1dθ.

One may also think of computing the distribution of the maximum, ξ
∗

∞, and the minimum,
ξ∗
∞

, of ξ∗ in a similar way to the previous section by integrating out u and v in the above
corollary. The law of the minimum was already computed in [9,10] and we refrain from
producing the alternative computations here. For the maximum, an easier approach is at hand.
Since ξ∗ is derived from a stable process killed on first exit of the positive half-line one may write

P
(
ξ
∗

∞ ≤ z
)
= P

(
exp{ξ

∗

∞} ≤ ez
)
= P1(σ

+

ez > σ−0 ) = Pe−z (σ+1 > σ−0 ).

The probability on the right-hand side above may be obtained from Theorem 1 by a straightfor-
ward integration. The latter calculation has already been performed however in Rogozin [27] and
is equal to

Γ (α)
Γ (αρ)Γ (α(1− ρ))

∫ 1−e−z

0
yαρ−1(1− y)α(1−ρ)−1dy.

Hence, together with the result for the minimum from [9,10] which we include for completeness,
we have the following corollary.

Corollary 4. For z ≥ 0 we have that

P
(
ξ
∗

∞ ∈ dz
)
=

Γ (α)
Γ (αρ)Γ (α(1− ρ))

(e−z)α(1−ρ)(1− e−z)αρ−1dz

and

P
(
−ξ∗
∞
∈ dz

)
=

1
Γ (αρ)Γ (1− αρ)

(ez
− 1)αρdz.

In the case that ξ∗ is spectrally one sided, it seems difficult to use the above result to extract
information about any underlying scale functions. The reason for this is that the process ξ∗ is
exponentially killed at a rate which is intimately linked to its underlying parameters and not at a
rate which can be independently varied.

3.3. Calculations for ξ↓

Henceforth we shall assume that (X,P↓x ) is an α-stable process conditioned to hit zero
continuously starting from x > 0. Again, unless otherwise stated, we shall assume that there
are two-sided jumps, and spectrally one-sided results may be considered as limiting cases of the
two-sided jumps case. We follow the same programme as the previous two sections dealing with
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the two- and one-sided exit problems without offering proofs since they follow in a similar spirit
to the calculations for ξ↑ and Proposition 1.

Theorem 4. Fix θ ≥ 0.

P
(
ξ
↓

T+u
− u ∈ dθ; T+u < T−v

)
=

sinπα(1− ρ)
π

(eu
− 1)α(1−ρ)(1− ev)αρ

× (eu+θ )αρ(eu+θ
− eu)−α(1−ρ)(eu+θ

− ev)−αρ(eu+θ
− 1)−1dθ

and

P
(
v − ξ

↓

T−v
∈ dθ; T+u > T−v

)
=

sinπα(1− ρ)
π

(eu
− 1)α(1−ρ)(1− ev)αρ

× (ev−θ )αρ(ev − ev−θ )−αρ(eu
− ev−θ )−α(1−ρ)(1− ev−θ )−1dθ.

Corollary 5. Fix θ ≥ 0.

P
(
ξ
↑

T+u
− u ∈ dθ; T+u <∞

)
=

sinπα(1− ρ)
π

(eu
− 1)α(1−ρ)(eu+θ

− eu)−α(1−ρ)(eu+θ
− 1)−1dθ

and

P
(
v − ξ

↑

T−v
∈ dθ; T−v <∞

)
=

sinπαρ
π

(1− ev)αρ(ev−θ )αρ(ev − ev−θ )−αρ(1− ev−θ )−1dθ.

From the above corollary we proceed to obtain the law of the maximum of ξ↓ (recalling that
it is a process with drift to −∞).

Corollary 6. For z ≥ 0

P
(
ξ
↓

∞ ≤ z
)
= (1− e−z)α(1−ρ).

Proof. Similarly to the calculations in Section 3.1 we make use of the fact that

P
(
ξ
↓

∞ ≤ z
)
= P(T+z = ∞).

Hence

P
(
ξ
↓

∞ ≤ z
)

= 1−
sinπα(1− ρ)

π
(ez
− 1)α(1−ρ)

∫
∞

0
(ez+θ

− ez)−α(1−ρ)(ez+θ
− 1)−1dθ

= 1−
sinπα(1− ρ)

π
(1− e−z)α(1−ρ)

×

∫
∞

0
(e−θ )α(1−ρ)+1(1− e−θ )−α(1−ρ)(ez

− e−θ )−1dθ.
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Next note that the integral on the right-hand side above has been seen before in (3.10) except for
the case that ρ is replaced by 1− ρ. We thus obtain from (3.10) and (3.11)∫

∞

0
(e−θ )α(1−ρ)+1(1− e−θ )−α(1−ρ)(ez

− e−θ )−1dθ

= [(1− e−z)−α(1−ρ) − 1]
π

sinπα(1− ρ)

and hence

P
(
ξ
↓

∞ ≤ z
)
= (1− e−z)α(1−ρ)

as required. �

Now, we suppose that (X,P↓1 ) has only positive jumps, in which case ρ = 1/α. We denote
by ξ↓,p its underlying Lévy process in this particular case. The associated scale function of ξ↓,p

can be identified as

E(−ξ↓,p1 )W↓,p(x) = P
(
ξ
↓,p
∞ ≤ x

)
= (1− e−x )α−1

= W↑,n(x)E(ξ↑,n1 ), (3.12)

where W↑,n is the scale function of the spectrally negative Lévy process ξ↑,n.
This observation reflects the duality property for positive self-similar Markov processes in

this particular case (see Section 2 in Bertoin and Yor [4]). More precisely, we have the duality
property between the resolvent operators of (X,P↑x ), with underlying Lévy process ξ↑,n, and
(X,P↓x ), for x > 0, with underlying Lévy process ξ↓,p.

From the identification of the scale function in (3.12) and Lemma 2, it is possible to give a
triple law for the process ξ↓,p at first passage over the level x > 0.

Lemma 3. Let ξ
↓,p
t = sup0≤s≤t ξ

↓,p
s . For x > 0, θ ≥ 0, φ ≥ η and η ∈ [0, x] we have

P
(
ξ
↓,p
T+x
− x ∈ dθ, x − ξ↓,p

T+x −
∈ dφ, x − ξ

↓,p
T+x −
∈ dη

)
= K−1 (1− e−x+η)α−2e−x+ηeθ+φ(eθ+φ − 1)−1−αdθdφdη,

where

K =
e(α−2)v

α(α − 1)

∫ e−v

1

(e−v − y)

y(y − 1)α−1 dy −
(1− ev)α−1

α(α − 1)
π

sinπ(α − 1)
.

In the remainder of this section, we assume that (X,P↓x ) is spectrally negative and we denote
its underlying Lévy process by ξ↓,n. The identification of the scale function of the Lévy process
ξ↑,n and Proposition 1 inspire the following result which identifies the scale function of the Lévy
process ξ↓,n. We emphasized that ξ↓,n is in fact ξ↑,n conditioned to drift to −∞.

Lemma 4. The Laplace exponent of ξ↓,n satisfies

ψ↓(θ) = m
Γ (θ − 1+ α)
Γ (θ − 1)Γ (α)

for θ ≥ 0, and where m = E(ξ↑,n1 ). Moreover, its associated scale function may be identified as

W↓,n(x) =
1
m
(1− e−x )α−1ex .
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Proof. Recall that the Laplace exponent of ξ↑,n is given by

ψ↑(θ) = m
Γ (θ + α)
Γ (θ)Γ (α)

for θ ≥ 0.

Hence from Proposition 1, we get that the Laplace transform of ξ↓,n, here denoted by ψ↓,
satisfies

ψ↓(θ) = ψ↑(θ − 1) = m
Γ (θ − 1+ α)
Γ (θ − 1)Γ (α)

for θ ≥ 1

which is also valid for θ ≥ 0, since any spectrally negative Lévy process has finite exponential
moments (see for instance [2,28]).

Now, recall that the Laplace transform of the scale function of ξ↓,n, here denoted by W↓,n , is
given by the inverse of ψ↓. Since, for θ > 1, we have that

Γ (θ − 1)Γ (α)
Γ (θ − 1+ α)

=

∫ 1

0
u(θ−1)−1(1− u)α−1du =

∫
∞

0
e−θx ex (1− e−x )α−1dx,

and hence

W↓,n(x) =
1
m
(1− e−x )α−1ex ,

as required. �

One may also write down a triple law for the first passage problem of ξ↓,n as we have seen
before for ξ↑,n.

Lemma 5. For v < 0, θ ≥ 0, φ ≥ η and η ∈ [0,−v] we have

P
(
v − ξ

↓,n
T−v
∈ dθ, ξ↓,n

T−v −
− v ∈ dφ, ξ↓,n

T−v −
− v ∈ dη

)
= K−1 e−q(φ−η)(e−(v+η) + α − 2)(1− ev+η)α−2(e−θ−φ)α(1− e−θ−φ)−1−αdθdφdη,

where q > 0 and

K =
1
α

∫
−v

0

∫
∞

η

e−q(η−φ)(e−v−η + α − 2)(1− ev+η)α−2(eφ − 1)−αdφdη.

Proof. First recall that the process ξ↓,n drifts towards −∞ a.s. Again, we have from Example 8
of Doney and Kyprianou [16] that the required probability is proportional to

e−q(φ−η)W↓,n(−v − dη)π↓(−θ − φ)dθdφ,

where q > 0 is the killing rate of the descending ladder height process (see for instance Chapter
VI in Bertoin [2] for a proper definition) of ξ↓,n.

Hence the triple law of interest has a density with respect to dθdφdη which is proportional to

e−q(φ−η)(1− ev+η)α−2(e−(v+η) + α − 2)(e−θ−φ)α(1− e−θ−φ)−1−α.

As (X,P↓1 ) is derived from a spectrally negative stable process, it cannot creep downwards (cf.
p. 175 of Bertoin [2]). This allows us to compute the unknown constant of proportionality K−1

via the total probability formula and after a straightforward computation, we have
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K =
∫
∞

0

∫
∞

0

∫
−v

0
e−q(φ−η)(1− ev+η)α−2(ev+η)(e−θ−φ)α(1− e−θ−φ)−1−αdθdφdη

=
1
α

∫
−v

0

∫
∞

η

e−q(η−φ)(e−v−η + α − 2)(1− ev+η)α−2(eφ − 1)−αdφdη.

and the proof is complete. �

4. Entrance laws for Lévy–Lamperti processes: Points

In this section we explore the two-point hitting problem for the Lévy–Lamperti processes
ξ↑ and ξ↓. There has been little work dedicated to this theme in the past with the paper of
Getoor [17] being our principle reference.

Henceforth we shall denote by (X,Px ) a symmetric α-stable process issued from x > 0
where α ∈ (1, 2). An important quantity in the forthcoming analysis is the resolvent density of
the process (X,Px ) killed on exiting (0,∞). The latter is known to have a density

u(x, y)dy =
∫
∞

0
dt · Px (X t ∈ dy, t < σ−0 )

for x, y > 0. From Blumenthal et al. [7] we know that∫
∞

0
dt · Px (X t ∈ dy, t < σ+a ∧ σ

−

0 ) =

{
|x − y|α−1

2αΓ (α/2)

∫ s(x,y,a)

0

uα/2−1

(u + 1)1/2
du

}
dy

where

s(x, y, a) =
4xy

(x − y)2
(a − x)(a − y)

a2 .

It now follows taking limits as a ↑ ∞ that

u(x, y) =
1

2αΓ (α/2)
|x − y|α−1

∫ 4xy/(x−y)2

0

uα/2−1

(u + 1)1/2
du.

According to the method presented in Getoor [17] one may compute

Px (Xσ{a,b} = a; σ{a,b} < σ−0 )

where σ{a,b} = inf{t > 0 : X t = a or b} and a, b > 0 using the following technique. The
two-point hitting probability in Getoor [17] is given by the formula

Px (Xσ{a,b} = a; σ{a,b} < σ−0 ) = −
q(x, a)

q(x, x)

where the {x, a, b} × {x, a, b}-matrix Q is defined by

Q = −U−1

and the {x, a, b} × {x, a, b}-matrix is given by

U =

u(x, x) u(x, a) u(x, b)
u(a, x) u(a, a) u(a, b)
u(b, x) u(b, a) u(b, b)

 .
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In particular an easy computation shows that

Px (Xσ{a,b} = a; σ{a,b} < σ−0 ) =

u(x,a)
u(b,a) −

u(x,b)
u(b,b)

u(a,a)
u(b,a) −

u(a,b)
u(b,b)

. (4.13)

Recalling the definitions of ξ↑ and ξ↓ as the Lévy–Lamperti processes associated now
with our symmetric stable process conditioned to stay positive and conditioned to be killed
continuously at the origin respectively we obtain the following result.

Theorem 5. Fix α ∈ (1, 2) and −∞ < v < 0 < u <∞. Define

T{v,u} = inf{t > 0 : ξt ∈ {v, u}}

where ξ plays the role of either ξ↑ or ξ↓. We have

P
(
ξ
↑

T{v,u}
= v

)
= (ev)α/2 f (1, ev, eu)

and

P
(
ξ
↓

T{v,u}
= v

)
= (ev)α/2−1 f (1, ev, eu)

where

f (x, a, b) =
u(x,a)
u(b,a) −

u(x,b)
u(b,b)

u(a,a)
u(b,a) −

u(a,b)
u(b,b)

.

5. Exponential functionals of Lévy–Lamperti processes

We begin this section by recalling a crucial expression for the entrance law at 0 of pssMp’s.
In [3,4], the authors proved that if a non-arithmetic Lévy process ξ satisfies E(|ξ1|) < ∞

and 0 < E(ξ1) < +∞, then its corresponding pssMp (X,Px ) in the Lamperti representation
converges weakly as x tends to 0, in the sense of finite-dimensional distributions towards
a nondegenerated probability law P0. Under these conditions, the entrance law under P0 is
described as follows: for every t > 0 and every measurable function f : R+→ R+,

E0 ( f (X t )) =
1

αE(ξ1)
E
(

I (ξ)−1 f
(

t I (ξ)−1
))
, (5.14)

where I (ξ) is the exponential functional:

I (ξ) =
∫
∞

0
exp{−αξs} ds.

Necessary and sufficient conditions for the weak convergence of (X,Px ) on Skorokhod’s space
were given in [9]. Recall that (X,P↑x ) denotes a stable Lévy process conditioned to stay positive
as it has been defined in Section 2. One easily checks that ξ↑ satisfies conditions for the weak
convergence of (X,P↑x ) given in [3,4,9]. Note also that in this particular case, the weak conver-
gence of (X,P↑x ) had been proved in a direct way in [12]. We denote the limiting law by P↑.

We first investigate the tail behaviour of the law of I (ξ↑).
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Theorem 6. The law of I (ξ↑) is absolutely continuous with respect to the Lebesgue measure.
The density of I (ξ↑)−1 is given by:

P
(

I (ξ↑)−1
∈ dy

)
= αE(ξ↑1 )y

αρ−1q1(y)dy, (5.15)

where qt is the density of the entrance law of the excursion measure of the reflected process
(X − X ,P0), where X t = inf0≤s≤t Xs . Moreover, the law of I (ξ↑) behaves as

P(I (ξ↑) ≥ x) ∼ C1x−α, as x →+∞. (5.16)

If X has positive jumps, then

P(I (ξ↑) ≤ x) ∼ C2xα(ρ−1)−1, as x → 0. (5.17)

The constants C1 and C2 depend only on α and ρ.

In the case where the process has no positive jumps, the law of I (ξ↑) is given explicitly in the
next theorem.

Proof. Let n be the measure of the excursions away form 0 of the reflected process X − X under
P0. It is proved in [23] that the entrance law of n is absolutely continuous with respect to the
Lebesgue measure. Let us denote by qt its density. Then from [12], the entrance law of (X,P↑)
is related to q1 by

P↑(X1 ∈ dy) = yαρq1(y)dy, y ≥ 0.

We readily derive (5.15) from identity (5.14). Moreover from (3.18) in [23]:∫ x

0
q1(y) dy ∼ Cxα(1−ρ)+1, as x → 0,

and from (3.20) of the same paper, if X has positive jumps, then:∫
∞

x
q1(y) dy ∼ C ′x−α, as x →+∞.

This together with (5.14) imply (5.16) and (5.17). The constants C and C ′ depend only on α and
ρ. �

Another way to prove part (i) of this theorem is to use a result due to Méjane [22] and
Rivero [26] which asserts that for a non-arithmetic Lévy process ξ , if Cramer’s condition is
satisfied for θ > 0, i.e. E(exp θξ1) = 1 and E(ξ+1 exp θξ1) < ∞, then P(I (ξ) ≥ x) ∼ Cx−αθ .
These arguments and Proposition 1 allow us to obtain the asymptotic behaviour at +∞ of
P(I (−ξ↓) ≥ x):

Proposition 2. The law of I (−ξ↓) behaves as

P(I (−ξ↓) ≥ x) ∼ C3x−α, as x →+∞. (5.18)

The constant C3 depends only on α and ρ.

Now we consider the exponential functional

I (−ξ∗) =
∫
∞

0
exp{αξ∗s } ds.
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Recall from Section 2 that ξ∗ is the Lévy process which is associated to the pssMp (X t1{t<T },Px )

by the Lamperti representation. From this representation, we may check path by path the equality

xα I (−ξ∗) = T .

Moreover, it follows from Lemma 1 in [10] that when (X,Px ) has negative jumps, Px (T ≤ t) ∼
c−t
αxα , as t tends to 0. This result leads to:

Proposition 3. Suppose that ξ∗ has negative jumps, then the law of I (−ξ∗) behaves as

P(I (−ξ∗) ≤ x) ∼
c−
α

x, as x → 0. (5.19)

In the remainder of this section, we assume that (X,Px ) has no positive jumps and recall that
m = E(ξ↑,n).

Theorem 7. The law of exponential functional I (ξ↑,n) =
∫
∞

0 exp{−αξ↑,ns } ds is absolutely
continuous with respect to the Lebesgue measure and has a continuous density p↑,n(·) which
has the following representation by power series

p↑,n(x) = −
c−1

πx

∞∑
n=1

Γ
(

1+
n

α

)
sin
(πn

α

) (−x−1/α)n

n!
, for x > 0,

where c = c−Γ (2− α)α−1(α − 1)−1 > 0.
Moreover the positive entire moments of (X,P↑), for t > 0, are given by the identity

E↑
(
(X t )

k
)
= (mt)k

Γ (α(k + 1))

Γ (α)(k+1)k!
, k ≥ 1, (5.20)

and its law is absolutely continuous with respect to the Lebesgue measure and has a continuous
density pt (·) which has the following representation by power series

pt (x) = −
t−1/α(α − 1)

Γ (2− α)c−mπ

∞∑
n=1

Γ
(

1+
n

α

)
sin
(πn

α

) (−x1/α)n

n!
, for x > 0.

Proof. From Bertoin and Yor [5], we know that the distribution of the exponential functional of
a spectrally negative Lévy process is determined by its negative entire moments. In particular,
the exponential functional for ξ↑,n satisfies

E
(

I (ξ↑,n)−k
)
= αmk Γ (kα)

Γ (α)k(k − 1)!
, (5.21)

with the convention that the right-hand side equals αm for k = 1. In particular, from (5.14) we
have that

E↑
(
(X t )

k
)
= (mt)k

Γ (α(k + 1))

Γ (α)(k+1)k!
,

which proves the identity (5.20).
Now, from the time reversal property of Theorem VII.18 in [2], we deduce that the last passage

time of (X,P↑), defined by

Ux = sup {t ≥ 0 : X t ≤ x} for x ≥ 0,
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is a stable subordinator of index 1/α. More precisely, its Laplace exponent is given by Φ(λ) =
(λ/c)1/α , where c = c−Γ (2−α)α−1(α−1)−1. According to Zolotarev [30], stable subordinators
have continuous densities with respect to the Lebesgue measure which may be represented by
power series. More precisely, the density of a normalized stable subordinator of index β ∈ (0, 1),
i.e. Φ(λ) = λβ , is given by

ρt (x, β) = −
t−1/β

πx

∞∑
n=1

Γ (1+ nβ) sin(βπn)
(−x−β)n

n!
, for x > 0. (5.22)

On the other hand from Proposition 1 in [13], we know that Ux has the same law as xα I (ξ↑,n).
Hence, I (ξ↑,n) satisfies that

E
(

exp
{
−λI (ξ↑,n)

})
= e−(λ/c)

1/α
, λ ≥ 0,

and its density p↑,n(x) is given by ρc1/α (x, 1/α), which proves the first part of the theorem.

Finally from (5.14), we deduce that the density of X (0)1 is given by

p1(x) = −
c−1

αmπ

∞∑
n=1

Γ
(

1+
n

α

)
sin
(πn

α

) (−x1/α)n

n!
, for x > 0.

The proof is now complete. �

Theorem 8. The exponential functional I (−ξ∗) =
∫
∞

0 exp{αξ∗s } ds has a continuous density
p∗(·) with respect to the Lebesgue measure which has the following representation by power
series

p∗(x) = c1/α
∞∑

n=1

αn − 1
Γ (αn)Γ (−n + 1+ 1/α)

xα(2−nα), for x > 0,

where c = c+Γ (2− α)α−1(α − 1)−1 > 0.

Proof. First, let us define X̂ = −X and denote by P̂ for its law starting from 0. Note that the
process (X, P̂) is a stable Lévy process with no negative jumps of index α ∈ (1, 2) starting
from 0. From the Lamperti representation, it is clear that T = I (−ξ∗) and from the self-similar
property, we have

P1(T > t) = P0(σ
−

−1 > t) = P0

(
inf

0≤s≤t
Xs > −1

)
= P0

(
t1/α inf

0≤s≤1
Xs > −1

)
= P̂

(
t1/α sup

0≤s≤1
Xs < 1

)

= P̂


 1

sup
0≤s≤1

Xs


α

> t

 .
Hence the exponential functional I (−ξ∗), under P1, has the same law as (sup0≤s≤1 X1)

−α , under

P̂.
Recently, Bernyk, Dalang and Peskir [1] computed the density of the supremum of a stable

Lévy process with no negative jumps of index α ∈ (1, 2). More precisely with our notation, the
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density f of sup0≤s≤1 X1, under P̂, is described as follows

f (x) = c1/α
∞∑

n=1

αn − 1
Γ (αn)Γ (−n + 1+ 1/α)

xnα−2, for x > 0.

Therefore the density p∗ of I ∗ is given by

p∗(x) = c1/α
∞∑

n=1

αn − 1
Γ (αn)Γ (−n + 1+ 1/α)

xα(2−nα), for x > 0,

which completes the proof. �
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[10] M.E. Caballero, L. Chaumont, Conditioned stable Lévy processes and the Lamperti representation, J. Appl. Probab.

43 (2006) 967–983.
[11] P. Carr, H. Geman, D.B. Madan, M. Yor, The fine structure of asset returns: An empirical investigation, J. Business

75 (2002) 305–332.
[12] L. Chaumont, Conditionings and path decompositions for Lévy processes, Stochastic Process. Appl. 64 (1996)
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[20] J.W. Lamperti, Semi-stable Markov processes, Z. Wahrscheinlichkeitstheor. Verwandte Geb. 22 (1972) 205–225.
[21] A. Lewis, E. Mordecki, Wiener-Hopf factorization for Lévy processes having negative jumps with rational
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