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A B S T R A C T

Data obtained from ISSR amplification may readily be extracted but only allows us to know, for each gene, if a
specific allele is present or not. From this partial information we provide a probabilistic method to reconstruct
the pedigree corresponding to some families of diploid cultivars. This method consists in determining for each
individual what is the most likely couple of parent pair amongst all older individuals, according to some
probability measure. The construction of this measure bears on the fact that the probability to observe the
specific alleles in the child, given the status of the parents does not depend on the generation and is the same for
each gene. This assumption is then justified from a convergence result of gene frequencies which is proved here.
Our reconstruction method is applied to a family of 85 living accessions representing the common broom
Cytisus scoparius.

1. Introduction

The aim of this paper is to develop and utilise a probabilistic model
to aid with pedigree reconstruction, using (dominant-marker) pheno-
type data in the form of band absence/presence (from PCR amplifica-
tion). There is a rich literature concerning genealogy estimation using
genotype data, but considerably less attention has so far been paid to
the (actual) case where only phenotype data is available. Estimating
genealogy using phenotypes is considerably more involved (and
computationally taxing) than its genotype counterpart for numerous
reasons. Suppose we consider only the case (as we do in this paper) of
estimation of parent–child relationships, and that birth data is avail-
able. Then a possible method of reconstruction using genotype data is
the following: first split the individuals into founders and non-founders
(if possible), and then sequentially for each non-founder and each pair
of individuals with earlier birth dates, compute a likelihood that this
pair is the parentage of the non-founder. A pedigree can be constructed
using the maximum likelihoods of each non-founder. On the other
hand, if only phenotype data is available, modifications have to be
made to this algorithm. One possible approach is to first condition on
the possible genotypes given the phenotypes and then compute the
likelihood as a mixture of these conditional likelihoods (weighted by
the distributions of the genotypes given the phenotypes). A problem

with this approach is that one must constantly update the genotype
distributions based on previous inferences. Another is that one mistake
(early on in the inference) could lead to a pedigree differing greatly
from the true pedigree (that one is trying to estimate). A possible work-
around is to keep multiple options open throughout the inference, but
this approach could result in an exponential growth (as the sequential
reconstruction proceeds) of the number of possible pedigrees. Further
discussion of these ideas can be found in Thompson (1976).

This is in fact not the approach we take in this paper (due to its high
level of complexity, and the various problems that have to be resolved).
Instead we assume that we have Hardy–Weinberg equilibrium (and we
give a rigorous justification of this, under certain assumptions, in the
appendix). Using this together with the assumption that gene-frequen-
cies in the population are at equilibrium (i.e. do not vary over time), we
are able to estimate various probabilities of interest that will enable the
pedigree to be reconstructed. In particular, our approach avoids the
need to continually update genotype distributions, but at the sacrifice
of some assumptions on the population.

We work in this paper with a parent likelihood function. The use of
such likelihoods can result in incorrect parent–child relationships to be
inferred, particularly in the case in which siblings are present in the
population. This somewhat paradoxical statement has been studied in
Thompson and Meagher (1987) in which it is observed that sibling
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relationships can give higher values than the true parents to the
likelihood. They suggest that a further analysis could be carried out
on individuals found to give a high value to the parent likelihood
function, via a full sib likelihood function, which may enable a
distinction to be made between parents and siblings of an individual.
On the other hand, from a computational viewpoint, this problem may
be too complex for large datasets with many individuals. Moreover, a
suitable model which describes full sib phenotype relationships must
be developed. Such a further analysis has been omitted from this work.

A similar model has been developed and used to construct max-
imum likelihoods in Jones (2003). Here, it is assumed that location-
based data is available, so information about the locations of indivi-
duals can be incorporated into the model. One way we could include
such data into our model would be via an adjustment of the prior
distribution, i.e. by weighting the prior by a function of the distance
between an individual and the possible parents.

Analysis of absence/presence of bands from DNA fingerprinting has
been carried out in Jeffreys et al. (1991) and Geyer et al. (1993) and
used to study relationships in a human and condor population,
respectively. Deterministic methods based on the maximum parsimony
principle and using purely combinatorial arguments allow a recon-
struction of the minimal pedigree relating individuals in accordance
with their types, see Chapter 4 in Semple and Steel (2003), Steel and
Hein (2006) and Blouin (2003). There are also numerous different
stochastic methods of reconstruction of pedigrees, see for instance
Thatte (2013), Kirkpatrick et al. (2011), Thompson (2000), Thatte and
Steel (2008), and Blouin (2003). Some of these models focus on the
reconstruction of the lineages by estimating transition probabilities
between nodes. Reconstructing the pedigree then comes down to the
construction of a Markov chain. This method is quite popular when
making use of identity by descent (IBD) data (Kirkpatrick et al., 2011).
In this case, a statistical inference based on Monte Carlo Markov chains
and Bayesian statistics are used to infer transition probabilities
between nodes of the graph (Steel et al., 1998; Thompson, 2000).
Coalescence theory may also prove to be a powerful tool in reconstruc-
tion of pedigrees, as observed in Wakeley et al. (2012).

1.1. Preliminaries

Mathematically, a pedigree is defined to be a directed acyclic graph
with the property that each vertex has indegree equal to 0 or 2 and any
outdegree (with further conditions in the case where individuals cannot
be either male or female: see Thatte and Steel, 2008, Lemma 1). When
it represents family relationships between individuals, the directions of
edges indicate parent–child relationships, with the direction from
parent to child. A pedigree is ‘reconstructed’ by determining, using a
statistical analysis based on certain data, the most likely pedigree under
a given model. If the model is correct then the pedigree of maximum
likelihood should be a good candidate for the true pedigree. Possible
data available could include phenotype, genotype, date of birth, data
obtained from professional breeders, etc., and it may be that such data
is only available for a subset of the individuals in the population.

In this paper, we work specifically with data provided through ISSR
amplification for diploid plant cultivars, which are vegetatively propa-
gated. ISSR amplification was popularised by Wolfe et al. (1998) and
largely used in genetic diversity assessment (Pradeep Reddy et al.,
2002). As a result of being vegetatively propagated, the data contains
both descendants and ancestors in the pedigree, i.e. both terminal and
internal nodes of the graph, while most above listed methods use
information from last generation descendants (terminals). Our data
provides the same information for each individual and one of the
assumptions we make is that there are no missing individuals in the
set. ISSR data only allows us to know, for each gene, if a specific allele
is present or not. In the case of presence, we do not know if this specific
allele is present in both chromosomes (i.e. at homozygotic state, and
transmitted to all the descendants) or if it is present only in one of them

(i.e. at heterozygotic state and thus transmitted to only half of the
descendants).

Since much of the discussion is for a general dataset, we introduce
some notation. We shall denote by n the number of individuals for
which data is available, and write g g,…, n1 for these individuals ranked
in their birth order (from oldest to youngest). This set of individuals is
partitioned into founders, denoted F, and non-founders, denoted Fc.
We shall write m for the number of (binary) data points available for
each individual (noting that, on the assumption of no missing data, this
value is the same for each individual). Note also that this does not
include date of birth data. Then the aim is to find, for each i n= 1,…,
corresponding to a non-founder gi, a pair of individuals (possibly non-
distinct) from the set g g{ ,…, }i1 −1 which (under a given model) is the
most likely parent pair of gi. The construction of this model hinges on
the fact that the probability to observe the specific alleles in the child,
given the status of the parents, does not depend on the generation. It
only depends on the gene frequencies which we assume are constant in
time. In order to justify this assumption, we shall prove in an appendix
that gene frequencies converge almost surely, as the number of
crossbreeding increases, toward an equilibrium which satisfies the
Hardy–Weinberg condition.

Our reconstruction method is applied to a family of 85 living
accessions representing the common broom Cytisus scoparius and
related cultivated hybrids (Cytisus x dallimorei and Cytisus x boskoo-
pi). The latter are diploid sexed plants whose crossbreedings have
occurred in the past 200 years from a set of founders. For each
individual, 6 markers are used to highlight presence or absence of a
particular allele in a high number of distinct regions of the genome.
These 6 markers provide a total of more than 420 distinct bands for
these 85 accessions, and each band has been treated as present or
absent for each individual. The results of our model applied to these
particular data are described in Section 3. Section 2 is devoted to the
presentation of the model. We give some conclusions in Section 4,
comparing our results to the existing literature and highlighting some
other frameworks where our method can be used.

2. Materials and methods

2.1. Model overview

We begin with a discussion about the various assumptions on the
individuals and data necessary to construct our probabilistic model.
The first aspect of this is an understanding of how reproduction occurs
within the population. The m binary data points for us will refer to the
presence (1) or absence (0) of an allele. Indeed, with ISSR amplification
using a particular marker, a binary response of 1 indicates that the
allele is present in at least one of the two chromosomes and a response
of 0 indicates it is absent in both. In particular, when the allele is
present, we do not know if it is present on the two chromosomes.

For each individual gi and each gene mℓ ∈ {1,…, }, we let
x g( ) ∈ {0, 1}iℓ be the indicator of absence and presences of individual
gi obtained during the ISSR amplification process. Hence the apparent
genotype of each individual g will be identified with the vector
x g x g x g x g( ):=( ( ), ( ),…, ( )) ∈ {0, 1}m

m
1 2 . Note that the event x g{ ( ) = 1}ℓ

means ‘one observes the presence of the allele specific to gene ℓ in
individual g’ or equivalently ‘the allelic combination of gene ℓ in
individual g is 01 or 11’.

As mentioned, in addition to the m binary data points, each
individual g has an associated date of birth, which we denote t(g).
Recall that the individuals are ordered, and that this ordering satisfies
if i j< then t g t g( ) ≤ ( )i j . In determining possible parent pairs, it is in
fact only the orders of the various dates that matter and so the values of
t(g) will be taken to be non-negative, with founders having value 0. In
our particular dataset, several of the individual are obtained from the
wild and precisely these individuals will be considered founders. Our
model assumes that little is known a priori about the relationships
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between the individuals other than their relative birth dates, and we
formalise this with a uniform prior on the probability that g g( , )j k are
the parents of individual gi over all pairs g g( , )j k with

t g t g t gmax( ( ), ( )) < ( )j k i . We also that there are no missing individuals,
so that the parents of each non-founder individual gi belong to the set
g g g{ ,…, }⧹{ }n i1 . To compensate for this fairly strong assumption, we
will impose a threshold probability and reject the most likely parent
pair of an individual if its corresponding likelihood falls below this
threshold level. Since this level is imposed artificially, we shall present
several pedigree reconstructions for differing values of the threshold.
Note that there is a monotonicity property: decreasing the threshold
cannot remove any edges from the reconstructed pedigree.

A further assumption we make is that for each individual g, the
coordinates of the apparent genotype are pairwise independent, that is,
for every mℓ ≠ ℓ′ ∈ {1,…, }, events x g{ ( ) = 1}ℓ and x g{ ( ) = 1}ℓ′ are
independent. In other words, we assume that alleles are ‘independently
inherited’. As we shall see, this assumption allows the likelihood
function to exhibit a product form, which greatly reduces the algo-
rithmic complexity.

We introduce some more notation to describe the distribution of
the apparent genotype of offspring, given the apparent genotype of the
parents. Let δ ∈ (−1/2, 1/2) and ε ∈ (0, 1/2) be constants which we will
refer to as errors. These compensate for any experimental errors (i.e. in
a laboratory). For each ℓ, we let p ∈ (3/4, 1)ℓ and q ∈ (1/2, 1)ℓ be
constants. These constants satisfy the following properties: for each
individual g with parents g and g , we have

•  x g x g x g p δ({ ( ) = 1}|{ ( ) = 1}, { ( ) = 1}) = min( − , 1)ℓ ℓ ℓ ℓ ,

•  x g x g x g q δ({ ( ) = 1}|{ ( ) = 0}, { ( ) = 1}) = min( − , 1)ℓ ℓ ℓ ℓ ,

•  x g x g x g ε({ ( ) = 1}| { ( ) = 0}, { ( ) = 0}) =ℓ ℓ ℓ .

The values of these constants must be estimated using the data
available. We detail how this can be done in the next section.

Finally we remark that, despite the reproduction being sexual, since
we are concerned in this work with plant populations, each individual
can either be male or female. Thus when referring to the parents gj and
gk of the individual gi the mother and the father are not distinguished.
In particular we have

 x g x g x g x g x g

x g

({ ( ) = 1}|{ ( ) = 0}, { ( ) = 1}) = ({ ( ) = 1}|{ ( ) = 1},

{ ( ) = 0}).
ℓ ℓ ℓ ℓ ℓ

ℓ

2.2. Estimating model parameters

We focus in this section on the estimation of the values pℓ and qℓ. To
begin with we assume that there is no experimental error, i.e. δ ε= = 0,
so that the expressions in the previous section become

 x g x g x g p({ ( ) = 1}|{ ( ) = 1}, { ( ) = 1}) = ,ℓ ℓ ℓ ℓ

and

 x g x g x g q({ ( ) = 1}|{ ( ) = 0}, { ( ) = 1}) = .ℓ ℓ ℓ ℓ

These constants can be estimated by observing the various frequencies
of the three possible genotypes (00, 01 and 11) appearing in the
dataset. However, since we cannot distinguish between 01 and 11, we
must estimate pℓ and qℓ using only the frequency of 00. We detail how
this is possible once we assume that these frequencies are at an
equilibrium. We denote by π (ℓ)00 , π (ℓ)01 and π (ℓ)11 these frequencies
and assume that equilibrium is attained, so that π (ℓ)00 , π (ℓ)01 and π (ℓ)11
do not change over time (successive crossbreedings). We justify this
assumption rigourously in the appendix.

Lemma 1. For each ℓ assume we have Hardy–Weinberg equilibrium:
π π π(ℓ) = 2 (ℓ) (ℓ)01 00 11 . Then

q
π

p π
π

= 1
1 + (ℓ)

, = 1 + 2 (ℓ)
(1 + (ℓ))

.ℓ
00

ℓ
00

00
2 (2.1)

Proof. In the following, when no confusion is possible, we will (for
sake of simplicity of presentation) drop the index ℓ in π (ℓ)00 , π (ℓ)01 and
π (ℓ)11 . We first compute pℓ and qℓ in terms of π00, π11 and π01. For a
fixed individual g, and a pair of individuals g g( , ) each chosen
uniformly at random from the sub-population g t g t g{ ′: ( ′) < ( )}, the
probability to observe x g( ) = 1ℓ and x g( ) = 1ℓ is

 x g x g π π π π({ ( ) = 1}, { ( ) = 1}) = + 2 + .ℓ ℓ 11
2

01 11 01
2

When they breed and give a child g, we have

 x g x g x g π π π π({ ( ) = 1}, { ( ) = 1}, { ( ) = 1}) = + 2 + 3 /4.ℓ ℓ ℓ 11
2

01 11 01
2

Therefore pℓ satisfies

p
π π π π

π π π π
π

π π
=

+ 2 + 3 /4
+ 2 +

= 1 −
4( + )

,ℓ
11
2

01 11 01
2

11
2

01 11 01
2

01
2

01 11
2

and qℓ can be obtained in the same way:

q π π
π π

= + 2
2 + 2

.ℓ
01 11

01 11

Since the frequencies π00, π01 and π11 belong to (0, 1), it is easy to
check from the above expressions that p ∈ (3/4, 1)ℓ and q ∈ (1/2, 1)ℓ .
Furthermore, we have the relationship p q q= (2 − )ℓ ℓ ℓ .

Now using the relation π π π= 201 00 11, we deduce that

q
π

p π
π

= 1
1 +

, = 1 + 2
(1 + )

,ℓ
00

ℓ
00

00
2 (2.2)

as claimed.□

2.3. Model construction

We shall now define the set of probability measures from which the
most likely pedigree will be derived. This definition is based on the
following product form of the conditional probabilities:

 ∏x g a x g a x g a x g a x g a

x g a

( ( ) = | ( ) = , ( ) = ) = ( ( ) = | ( ) = ,

( ) = ),

m

ℓ=1
ℓ ℓ ℓ ℓ

ℓ ℓ

which are obtained from all possible triplets of individuals g g g( , , ) and
their apparent genotypes a a a= ( ,…, )m1 , a a a= ( ,…, )m1 and
a a a= ( ,…, )m1 in {0, 1}m. More specifically, the set of individuals
g g{ ,…, }n1 and their apparent genotype being given, for all triples
i j k n( , , ) ∈ {1,…, }3 and for each mℓ ∈ {1,…, }, we define the agree-
ments/disagreements indicators between the genotype of an individual
gi and that of the possible pair of parents g g( , )j k :

∑

∑

p p

q

q ε

ε

1 1

1

1 1

1

= , = ,

= ,

= = ,

= .

ijk x g x g x g ijk x g x g x g

ijk x g x g x g

ijk x g x g x g ijk

m

x g x g x g

ijk

m

x g x g x g

(ℓ)
{ ( )= ( )= ( )=1}

(ℓ)
{ ( )= ( )=1, ( )=0}

(ℓ)
{ ( )≠ ( ), ( )=1}

(ℓ)
{ ( )≠ ( ), ( )=0}

ℓ=1
{ ( )= ( )=0, ( )=1}

ℓ=1
{ ( )= ( )= ( )=0}

j k i j k i

j k i

j k i j k i

j k i

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ

Now set p p δ= min( − , 1)δ,ℓ ℓ , q q δ= min( − , 1)δ,ℓ ℓ , p p= 1 −δ δ,ℓ ,ℓ,
q q= 1 −δ δ,ℓ ,ℓ, ε ε= 1 − and for j k i≤ < , define

∑
ν j

k ε ε ε ε p p p p q q

q q

log ( ,

):= log + log + { log + log + log

+ log },

i

ijk ijk

m

ijk δ ijk δ ijk δ

ijk δ

ℓ=1

(ℓ)
,ℓ

(ℓ)
,ℓ

(ℓ)
,ℓ

(ℓ)
,ℓ
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and otherwise set ν j k( , ) = 0i . Then for each non-founder gi, the
probability measure μi on n{1,…, }2 is explicitly defined in terms of
x g( )i as

μ j k ν j k
z

j k n( , ) = ( , ) , , ∈ {1,…, },i
i

i

where z ν j k:= ∑ ( , )i j k i, is a normalising constant. We readily check that
z > 0i for all i such that t g( ) > 0i .

Writing p ∈ (0, 1) for the threshold probability, we reconstruct the
pedigree by determining, for each g F∈i

∁, the individuals gj and gk
(possibly equal), satisfying:

1. j k i≤ < ;
2. μ j k μ j k j k i( , ) = max { ( ′, ′): ′ ≤ ′ < }i j k i′, ′ (gj and gk maximise the like-

lihood);
3. μ j k p( , ) ≥i .

We remark that the normalisation of the probability measure μ is
relevant only for the comparison with the threshold probability. The
pedigree reconstructions displayed in Section 3 have been obtained by
implementing the above steps with an R program for our specific data.
Note that the implementation requires an estimation of the values of ε
and δ (or else, they can be set to 0).

3. Application of the model

Our particular dataset concerns a population of 85 living accessions
representing the common broom C. scoparius and three related
interspecific hybrids. This dataset consists of 62 vegetatively propa-
gated cultivars obtained from various nurseries. These cultivars belong
to either C. scoparius, Cytisus x dallimorei (hybrid between C.
scoparius and C. multiflorus), C. x praecox (hybrid between C. multi-
florus and C. oromediterraneus), or C. x booskopii (hybrid between C.
x dallimorei and C. x praecox). In addition three to nine individuals
obtained from each of five wild populations have been included (3
individuals of Cytisus oromediterraneus from France, 3 individuals of
C. scoparius from Italia, 3 from Poland, 4 from Angers, France and 9
from Ernée, France). For all these samples, DNA extraction used the
Nucleospin® Plant II kit from macherey-Nagel. IISR data was obtained

using six set of primers, namely ISSR5 (sequence: 5-CACAC
ACACACACACARC-3), ISSR7 (sequence: 5-CACACACACACACAC
ART-3), ISSR13 (sequence: 5-GTGTGTGTGTGTGTGTYA-3), ISSR890
(sequence: 5-VHVGTGTGTGTGTGTGT-3), ISSR891 (sequence: 5-
HVHTGTGTGTGTGTGTG-3) and ISSRa (sequence: 5-GCTCTCTC
TCTCTCTC-3). Polymerase chain reaction (PCR) was done using the
following parameters : 95 °C for 2 min, then 39 cycles of 95°C for 30 s,
50 °C for 30 s, 72 °C for 120 s, followed by 10 min of extension at
72 °C. Electrophoresis was done on 5% acrylamide–bisacrylamide gel
(mixing ratio: 29:1), with 7 M urea, with a pre-run of 30 min at 80 W,
then 2 h30 at 60 W. Staining used silver nitrate. Gels were scanned and
band read manually.

Using the data obtained in this manner, our aim in this section is to
determine the most likely pedigree relating these individuals. A code in
language R has been written according to the model described in the
previous sections. This code applied to our data provided the pedigrees
presented in Figs. 1–3. The parameters ε, δ, pℓ and qℓ must be inferred
from our data in order to use the model outlined in the previous
sections.

Breedings have occurred over time under the action of professional
breeders or according to natural phenomena and with no more
information available, our uniform prior assumption is reasonable.
On the other hand, some relationships between certain individuals are
believed to hold, and we will discuss shortly how our model (taking a
uniform prior) is able to recover many of these relationships.

We believe that for our particular dataset few or no individuals are
missing, and so if no parents can be found for an individual then we
will assume that individual is a founder. We next need to justify the
independence between the bands x g{ ( ) = 1}ℓ , mℓ ∈ {1,…, }. However,
dependence may occur due to the selective sweep phenomenon which
can associate together several genes whose loci are close to each other
along the chromosome. For such sets of genes, recombination is not
strong enough for them to be considered as independent in the
reproduction process. As an attempt to rectify this we have manually
selected 168 of the 424 bands which we will assume satisfy the
independence assumption. These 168 bands are split across the four
markers as 34 bands for ISSR890, 22 for ISSR891, 31 for ISSRa, 32 for
ISSR5, 27 for ISSR7 and 22 for ISSR13. The choice of selection is based
purely on an observation of joint presence and absence of bands across
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the population. More specifically, we place bands into equivalence
classes in the following manner: for each pair of bands within a marker,
we observe the number of present–present, absent–present and
absent–absent occurrences across all individuals. If, based on these
numbers, we consider the two bands to be strongly correlated, we say
they are in the same equivalence class. To obtain our ‘independent’
bands, we will simply choose a single member from each equivalence
class (i.e. a class representative).

We also need to determine the values of ε, δ, pℓ and qℓ related to the
present data, in order to construct the probability measure defined in
the model. We achieve this by repeatedly crossing two individuals
(G017 C. scoparius ‘Lunagold’ and G010 Cytisus x dallimorei

‘Burkwoodii’) and performing marker analysis (the data provided to
us for these crossbreedings used only 5 of the 6 ISSR markers used for
the full dataset) on the resulting offspring (n=33 plants). No knowledge
of pℓ or qℓ (for the crossbreeding dataset) is required to estimate the
value of ε. On the other hand, to estimate δ, we must first estimate the
values of pℓ and qℓ (found via π00 and Hardy–Weinberg principle). We
obtain the following estimates (by taking the mean values obtained
over all markers): δ = 0.15 and ε = 0.05.

In the appendix we prove convergence of gene frequencies and we
will assume that the population which is considered here has attained
some equilibrium. As can be seen from Eq. (2.2), thanks to Hardy–
Weinberg principle, the probabilities pℓ and qℓ only depend on the
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Fig. 2. Threshold probability p=0.2.
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Fig. 3. Threshold probability p=0.3.
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probability π00. We emphasise that the latter probability is actually the
only one whose empirical value can be determined from the data.
Indeed it is not possible to distinguish the genotype 01 from the
genotype 11 in ISSR data. In the present case, we obtain the values of
π00 and hence pℓ and qℓ for each band.

The probabilities μ j k( , )i defined in the end of Section 2.1 may
appear quite low once computed from our dataset. However knowing
that all individuals belong to the same family, we are only concerned
with their relative values. The pedigrees appearing in Figs. 1, 2 and 3
were obtained with the threshold probabilities 0.1 and 0.2 and 0.3
respectively. Individuals whose parentage cannot be determined and
founders have been represented in black and individuals have been
omitted if no parents or children are found by the model. As expected,
when the threshold probability p increases, the number of relations
between individuals decreases and more individuals are considered as
founders. Compared to the existing knowledge we have on the group
(see Auvray, 2011), several relationships are congruent with historical
information. For example, ‘Zeelandia’ is reported as a descendant of
‘Burkwoodii’ and a C. x praecox. This relationship appears with all
threshold probabilities. ‘Liza’, ‘Andreanus Select’, and ‘Donard
Seedling’ are all historically reported as sport (bud mutations) of
‘Burkwoodii’, while ‘Lena’ is supposed to be a seedling of it. They are all
linked under p=0.1 and p=0.2, while under higher threshold prob-
ability ‘Burkwoodii’, ‘Liza’ and ‘Andreanus Select’ are still linked,
however, Donard Seedling is treated as a seedling of ‘Burkwoodii’
and Cytisus ardoinoi which may be impossible (the sample used for
representing this last species being wild collected). ‘Firefly’ is reported
as a seedling of ‘Andreanus’, which appears under all threshold
probabilities. Comparing to historical information, ‘La Coquette’ ap-
pears here as founder, and as parent of ‘Roter Favorit’ while it was
reported as a self-fecondation of ‘Hollandia’, and half-brother of
‘Boskoop Ruby’. ‘Hollandia’ is known to be a seedling from
‘Burkwoodii’ and C. x praecox, here, under p=0.1, it is a seedling
between the same ‘Burkwoodii’ but with C. scoparius.

Using the same ISSR data, Auvray in Auvray (2011) points out the
putative link between ‘Apricot Gem’ and ‘Dukaat’, as well as between
‘Boskoop Ruby’ and ‘Windlesham’. These links are re-inforced here and
second putative parents are provided (kewensis for ‘Apricot Gem’ and
‘Hollandia’ for ‘Windlesham’). Auvray (2011) also point out a paren-
tage between ‘Moclard Pink’ and ‘Minstead’ (the former being a
putative seedling of the later), here ‘Moclard Pink’ is always linked
with ‘Albus’, a point which needs consideration. Under the various
threshold probabilities, ‘Luna’, ‘Palette’ and ‘Roter Favorit’ are linked,
this seems reasonably consistent with the fact that they all have been
obtained from the same nursery (Arnold, at Alreslohe near Holstein in

Germany) around 1960. ‘Jessica’, linked to the same group under
p=0.1 is of unknown parentage, while ‘Goldfinch’, also linked under
p=0.1 is reported to be a seedling between ‘Donard Seedling’ and
‘Dorothy Walpole’ (lacking from the sampling). The links between
‘Andreanus’, ‘Firefly’, ‘Golden Sunlight’, ‘Andreanus Splendens’,
‘Golden Cascade’, ‘Roter Favorit’ and ‘Queen Mary’, appearing under
all threshold probabilities, is a reminder that all these cultivars are
selection of C. scoparius and not of any of the interspecific hybrids.

4. Discussion

We have set up a mathematical model of pedigree reconstruction
whose basic principle is to determine, for each individual, what is the
most likely parent pair in the population, according to a certain
probabilistic model. The robustness of this model mainly relies on
the fact that gene frequencies have attained some equilibrium. We have
shown (see the appendix) that indeed, in the absence of any evolutive
forces, gene frequencies converge toward a limit random vector which
satisfies Hardy–Weinberg equilibrium. From this model we derived an
algorithm which is written in language R and then we applied this
model to ISSR data from a population of diploid plants. The results
reveal that the pedigrees obtained from this method fit to the partial
reconstructions based on botanical data or other methods using
dendograms obtained from matrix distances. This additional source
of information could also be used in order to improve the model by
constructing a new probability distribution giving a relative weight to
each kind of data.

We have assumed that recombination is uniform, but this could be
made more realistic by determining how different sets of loci actually
recombine from a preliminary statistical inference. The model could
easily be adapted to this setting.

Finally we emphasise that our model has essentially been applied to
phenotype data. Indeed, as already observed in Section 2, the knowl-
edge of ISSR is equivalent to the knowledge of the expression of a
dominant gene. Hence our model can easily be tested from a popula-
tion about which we observe a specific set of phenotypical criteria and
whose family relationship are a priori known.
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Appendix A

We show that the assumption of Lemma 1 is satisfied, that is, the frequencies π00, π01 and π11 of the types 00, 01 and 11 can be taken to be fixed
in time, and satisfy the Hardy–Weinberg condition.

From time n=0, we rank the crossbreedings in increasing order as they occur. Since we assume the evolution of genes are independent of each
other, we only need to consider the dynamics of the frequencies of genotypes 00, 01, 11 for one gene. Suppose π n

00, π n
01 and π n

11 denote the proportions
of individuals g with genotype 00, 01 or 11 respectively, just after the n-th crossbreeding. We assume that we start at time n=0 with two founders, so
that after the n-th crossbreeding, n + 2 individuals are present in the population. In particular, there is no death which is consistent with the fact
that we consider plant cultivars in this work. Moreover we assume that both alleles exist in the two founders. Then our reproduction law described
in the previous sections may actually be represented as a generalised urn model in which the probability of replacement depends on the proportion
of individuals in the population, see Pemantle (2007) and the references therein. More specifically, at each step n, we choose two individuals
uniformly at random in the population.

Consider the polynomial function F x y z x y z: {( , , ) ∈ [0, 1] : + + = 1} →3 3 given by

F x y z x y z xy x y xy yz xz y yz z y( , , ) + ( , , ) = ( + + /4, + + 2 + /2, + + /4),2 2 2 2 2

and denote by x y z F x y z= {( , , ) ∈ [0, 1] : ( , , ) = 0}3 the zero set of F.
We construct π π π π= ( , , )n n n n

00 01 11 recursively. Write F F F F= ( , , )1 2 3 . At each step n, two uniformly chosen individuals from the population breed
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and the new frequencies of individuals with types 00, 01 and 11 become:
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Let us make this construction more formal. First we define a stochastic process δ( )n n with values in {(1, 0, 0), (0, 1, 0), (0, 0, 1)} in such a way
that the law of δn+1 conditionally on π i π i= ,…, =n

n
0

0 is F i( )n . Recall that the quantity n π( + 2) n is the vector of the numbers of individuals of type
00,01,11 at time n. Then πn+1 is defined by

n π n π δ n( + 3) = ( + 2) + , ≥ 0.n n
n

+1
+1

Let us set

η δ F π= − ( ),n n
n

+1

then we readily obtain the following equality:

π π
n

F π π η= + 1
+ 3

( ( ) − + ).n n n n
n

+1
(1.3)

For u ∈ [0, 1]3, let f : ∪ {0} → [0, 1]u
+ 3 be the solution to the ODE
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The solution can be calculated explicitly and we easily check that with f t x t y t z t( ) = ( ( ), ( ), ( ))u u u u and u x y z= ( , , )0 0 0 , then
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We aim to show almost-sure convergence of πn as n → ∞. The first step in achieving this is to show almost-sure convergence of v π( )n as n → ∞,
where v u f t( ):=lim ( )t u→∞ . This is achieved in the following lemma.

Lemma 2. As n → ∞, v π( )n converges almost surely.

Proof. We shall show that almost surely, v π( ( ))n
n is a Cauchy sequence. We have
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We provide upper bounds on each term appearing on the right-hand side. Firstly, using the fact that v x v f t( ) = ( ( ))x for any t ≥ 0,
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We have the explicit form of v as
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for any u x y z= ( , , )0 0 0 . The function v is clearly Lipschitz on [0, 1]3 and so there exists a constant c such that
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by the definition of πn, see (1.3). However since F is bounded we deduce that we can upper bound this term byO n(1/ ). Plugging the two bounds into
Eq. (1.5) shows that the sequence v π( ( ))n

n is indeed Cauchy (surely), and this completes the proof.□
We are now in a position to show almost-sure convergence of the stochastic process π π π π= ( , , )n n n n

00 01 11 , n ≥ 1.

Theorem 1. The random vector π π π π= ( , , )n n n n
00 01 11 , n ≥ 1 has the following asymptotic behaviour:

π π π π as n tends to⟶( , , ), + ∞,n a s. .
00 01 11

where π π π( , , )00 01 11 is distributed on . In particular, it satisfies the Hardy–Weinberg equilibrium:

π π π= 2 .01 00 11

Proof. We first claim that almost surely, the L1 distance between πn and tends to 0 as n → ∞. Recall that the L1 distance π| − |n is defined as

π π s π x π y π z| − |:=min{| − |}:= min {| − | + | − | + | − |}.n
s

n
x y z

n n n
∈ ( , , )∈

00 01 11

In fact, this is a consequence of Theorem 2.2 in Schreiber (2001) which asserts that the limit set of π( )n (i.e. the set of limits of subsequences of π( )n )
is almost surely a connected compact internally chain recurrent set for the flow associated to the ODE (1.4). In particular the limit set of π( )n is
included in , which implies that the distance between πn and tends almost surely to 0.

Suppose x ∈ so that F x( ) = 0 by definition. Then f t( ) = 0d
dt x for all t ≥ 0 and so f t x( ) =x for all t ≥ 0, and in particular v x x( ) = . Since v is

Lipschitz and v ( ) = we have that, as y → , v y y| ( ) − | → 0. But since v π( )n converges almost surely to some limit random variable, we deduce
that πn also converges almost surely and to the same limiting random variable.

Finally, Hardy–Weinberg equilibrium follows readily from the fact that π π π( , , )00 01 11 is distributed on the set , i.e. F π π π( , , ) = 000 01 11 .□
Let us now consider the general case m ≥ 1. We denote by πG the frequency of a genotype G G G= ( ,…, ) ∈ {00, 01, 11}m

m
1 . If πi,00, πi,01 and πi,11,

are respectively the limiting gene frequencies of the i-th gene with alleles 0 and 1, then from the assumption of independence between genes (see
condition c( ) in the previous subsection), the limiting frequency of the genotype G at equilibrium is

π π π π= … .G G G m G1, 2, , m1 2

Remark 1. Observe that from equations π π π+ + = 100 01 11 and π π π= 201 00 11, the distribution of the limit triplet π π π( , , )00 01 11 is actually one
dimensional. However, it is a quite challenging question to determine the exact distribution of π00. Our simulations show that it may have a diffuse
distribution on [0, 1] which depends on the initial values π00

0 , π01
0 and π11

0 , see Fig. 4.

Remark 2. A subsequent question to Theorem 1 concerns the speed of convergence of π π π( , , )n n n
00 01 11 . Some results in this direction are given in

Delyon (1996) and Higueras et al. (2006). However, they require some strong assumptions on the derivative of the function F at the limiting point
π π π( , , )00 01 11 , which are quite difficult to verify in our situation, mainly due to the fact that we do not know the distribution of π π π( , , )00 01 11 . It is
reasonable to expect that a central limit type theorem holds, in which case, the speed of convergence of π π π( , , )n n n

00 01 11 to π π π( , , )00 01 11 would be of
order n .
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