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3.1 Introduction

Anyone reading about the mathematical works of Kolmogorov must naturally
expect to find broad considerations about the axiomatization of probability
which Kolmogorov developed at the beginning of the nineteen thirties and
which forms the contents of his famous publication Grundbegriffe der Wahr-
scheinlichkeitsrechnung (Foundations of the theory of probabilities) [Kol33],
published by Springer in 1933. It is certain that among all the works of the
Soviet mathematician, this small opuscule of about sixty pages is the most
famous part, and is often the only one to which his name is attached for a
quite large public but also for some mathematicians. Without wanting in any
way to diminish the importance of this work, it is nevertheless quite aston-
ishing that the attention was thus focused on what does not constitute the
most original creation of Kolmogorov in the field of probability. The aim of
this part, devoted to certain aspects of the probabilistic works of the scientist,
is precisely to highlight some of his most remarkable works in that domain.
In this imposing monument, a drastic choice was necessary and we chose to
focus on the two purely probabilistic directions that Kolmogorov worked on,
namely on the one hand the study of the various types of convergence for sums
of independent random variables, which enabled him to continue the studies
of his Russian predecessors Markov and Lyapounov, and on the other hand lit-
erally revolutionary considerations about processes in continuous time, whose
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branches extend ahead in time until some discoveries which go back to hardly
thirty years. Nevertheless, as we found it difficult, and almost impossible, that
a chapter devoted to the probabilistic works of the Soviet mathematician does
not refer to the axiomatization of probability, we will begin with a short glance
of his main contributions to this topic, inviting the reader to refer to the nu-
merous articles dealing with the question in a more detailed way (see e.g.
[vonP94], [SV06]). We will also refer to the essential text of Shiryaev [Shi89]
for a more complete chart of Kolmogorov’s works. One will find in the article
[Maz03] some indications on the life of the mathematician and the status of
the discipline in the stalinist USSR.

3.2 The axiomatization of probability calculus

3.2.1 An abstract framework

As mentioned above, Kolmogorov’s publication Grundbegriffe der Wahr-
scheinlichkeitsrechnung [Kol33] is a modest monograph of 60 pages published
in 1933 along with several articles devoted to the modern probability theory.
The Russian translation of the text is dated 1936, and it was mostly achieved
due to some political reasons at the time when an important pressure was
put on Soviet scientists so that they publish their works in Russian and in
USSR rather than abroad. As for the first English translation, it is dated 1950.
This relatively important delay shows that the axiomatization suggested by
the Russian scientist wasn’t as generally accepted as we usually think it was.
Several probabilists, and among the most eminent ones, such as Paul Lévy,
will never use the axiomatization of Kolmogorov, which will not prevent them
in any way having extraordinary ideas. In fact, outside the USSR, before the
50’s, more or less only Cramér’s treatise [Cra37] refers to this field. Besides,
this author doesn’t give any detailed explanation; he only uses Kolmogorov’s
axiomatization because it is the most practical one among those available at
that time (in particular the theory of collectives suggested by von Mises). How-
ever, from the 50’s, it will definitely be adopted by the younger generation.
What is attractive in the formal framework proposed by this axiomatization,
is the fact that it provides e.g. a global explanation of the multiple paradoxes
which had in the past plagued this discipline (like those of Joseph Bertrand,
Emile Borel etc.) : each time, the precise definition of the probability space
as a description of the considered random experiment allows to suppress the
ambiguity. (On this subject, see infra, as well as [SV06] and [Szé86]. One can
also refer to Itô’s comments in the foreword of [Itô86].)

The great force of Kolmogorov’s treatise is to voluntarily consider a com-
pletely abstract framework, without seeking to establish bridges with the ap-
plied aspects of the theory of probability, beyond the case of finite probabil-
ities. In general, the search for such bonds inevitably brings to face delicate
philosophical questions and is thus likely to darken mathematical modelling.
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While speaking about the questions of application only in the part devoted to
the finite probabilities4, Kolmogorov is released from this constraint and can
avoid the pitfalls that von Mises had not always circumvented. Indeed, the
theory of the collectives also claimed to establish a discrimination between the
experiments for which the application of the probabilities was legitimate, and
others. But Kolmogorov, who presents a purely mathematical theory, does not
have such an ambition, and thus not such a limitation. Within the abstract
framework which he defines, any mathematical work is legitimate, and its
validation for applications is a matter for other fields of knowledge. In partic-
ular, he allows himself to consider sets not having any topological structure,
whereas for finer studies (like the phenomena of convergence), he will be free
to work on better spaces through the use of images of probability laws. Be-
sides this fact will place the axiomatization of Kolmogorov in opposition with
the Bourbaki topological set-up concerning measure theory. The very general
character of his theory will make it possible to the Russian mathematician to
use in all its force the measure theory of Borel and Lebesgue, which is still
relatively new at that time since its abstract version was mainly developed by
Fréchet (quoted in the Grundbegriffe as the one who liberated measure theory
from geometry) then by the Polish school (Banach, Sierpiński, Kuratowski. . . )
in the 20’s.

From the beginning of the twentieth century, Borel had been a promoter
of the use of the measure theory and integral of Lebesgue for the treatment
of questions of probability. In 1909, he publishes a revolutionary paper where
such a method enables him to obtain a first strong version of the law of large
numbers and interpretations on the distribution of real numbers. Undoubtedly
his moderate consideration for probabilistic mathematics and serious doubts
as for the legitimacy of their applications prevented him from fully reaping
the crops from the seeds which he had sown.

Kolmogorov introduces the by now classical concept of a probabilisty space
in the form of a triplet (Ω,F , P ) composed of a set Ω provided with σ-
algebra (which he calls a set field) F and a normalized measure (probability)
P . The random variables are simply functions X with real values defined on
Ω such that for all a ∈ R, {ω ∈ Ω,X(ω) < a} ∈ F and their laws are the
image measures of the probability P defined by P (X)(A) = P (X−1(A)), for
all A ∈ B(R), the Borelian σ-algebra of R.

The major contributions of Kolmogorov’s work in the clarification of prob-
abilistic concepts are incontestably the construction of a probability measure
on an infinite product of spaces, which plays an important part in the theory
of stochastic processes, and the formalization of the conditional law via the
use of the Lebesgue-Radon-Nikodym theorem (the abstract version of this
theorem had been published by Nikodym in 1930). Let us note incidentally

4 Which is not without reminding one about the way in which, in his article of 1931
on Markov processes, he had proposed in a long introduction to defer to other
works some reflections about the applicability of his theories
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that it wasn’t the first time that a probability on a product space was built: the
most famous example is given by Wiener [Wie23] who since 1923, by applying
techniques that Daniell had developed a few years before to extend Lebesgue’s
integral to spaces of infinite dimensions, built the probability measure − now
called Wiener’s measure − associated with Brownian motion (see [RY91]).

3.2.2 Construction of the conditional law

Let us present in a few words the construction of the conditional law, while
following the text of Kolmogorov but with modernized notations for the sake
of clarity of our exposition.

First of all let us recall the definition of the elementary conditional prob-
ability of an event C (i.e. of an element of the σ-algebra F) by an event D
such as P (D) > 0, by P (C | D) = P (C ∩D)/P (D). Now, let U denote a real-
valued random variable and B an event. We try to build a random variable
ω �→ π(U(ω);B), a Borelian function of U , so called conditional probability of
B knowing U , and such that, for all A ∈ B(R) with P (U ∈ A) > 0, we have:

P (B | U ∈ A) =
∫

Ω

π(U ;B)dP (. | U ∈ A).

For any A ∈ B(R), we write QB(A) = P (B ∩ U−1(A)). Let us note
that if P (U) is the law of U defined by P (U)(A) = P (U−1(A)), then
P (U)(A) = 0 implies QB(A) = 0 and thus, according to the Lebesgue-Radon-
Nikodym theorem, we can find a Borelian function fB such that ∀A ∈ B(R),

QB(A) =
∫

R

1IAfBdP (U), i.e.

P (B ∩ U−1(A)) =
∫

R

1IAfBdP (U) =
∫

Ω

1IU∈AfB ◦ UdP

and thus
P (B | U ∈ A) =

∫

Ω

fB ◦ UdP (. | U ∈ A)

and we set π(U ;B) = fB ◦ U . From this point, Kolmogorov will recover
all classical properties of conditional probabilities. He nicely illustrates the
strength of his formalism by explaining the paradox of Borel related to the
random drawing of a point on a sphere: the interested reader can refer to e.g.
[Bil95], p. 462 and [SV06].

3.2.3 The 0-1 law (or the all or nothing law)

As mentioned previously, in 1933, measure theory isn’t yet very commonly
accepted, in any case not in its abstract form, and when Fréchet will discover
the monograph of the Russian mathematician, he will be disconcerted by the
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very abstract form taken by certain arguments, like that of the law known as
the 0-1 law which Kolmogorov placed in the appendix of his work. This law
was stated independently, in particular by Lévy in 1934 (when he didn’t yet
know the Grundbegriffe), and it is interesting to compare the two approaches of
this result, which we will do by way of illustration of the strongly synthesizing
character of the axiomatic proposed by Kolmogorov. For an easy reading, we
will use today’s vocabulary and notations, keeping only the spirit of the two
proofs.

Theorem 1. Let (Xn)n≥1 denote a sequence of independent real-valued ran-
dom variables.

We introduce Gn = σ(Xn, Xn+1, . . . ) (the σ-algebra generated 5 by Xn,

Xn+1, . . . ), and G =
⋂

n≥1

Gn (the “tail σ-algebra”).

Then, any element of G is of probability 0 or 1.

Kolmogorov’s proof: It is the most common proof taught today. Let A an
element of G. Let us suppose that P (A) > 0 and note PA the conditional
probability knowing A. According to the independence hypothesis made on
the Xk’s, for all B ∈ Fn = σ(X1, X2, . . . , Xn), B is independent from the
elements of Gn+1 and thus from A, and we have:

PA(B) =
P (A ∩B)
P (A)

= P (B).

Therefore, the probabilities PA and P coincide on all Fn’s, and hence on
Boole’s algebra

⋃

n≥1

Fn and thus, according to the monotone class theorem,

on the σ-algebra thus generated, i.e. F = σ(X1, X2, . . . , Xn, . . . ). Since in
particular A ∈ F , we have PA(A) = P (A), i.e. P (A) = 1. �
Lévy’s proof: In fact, Lévy contents himself to prove the result when variables
Xn follow a uniform law on [0,1]. In this case, the obtention of a realization
of the sequence (Xn)n≥1 can be conceived as the one of a point in a cube of
size 1 with an infinity of dimensions, the law of probability being given by
Lebesgue’s measure. Lévy’s argument is then based on an observation which
he affirms being obvious and which is equivalent in fact to a monotone class
result: he points out (we employ the modern formalism) that for any event A
of the σ-algebra F = σ(X1, X2, . . . , Xn, . . . ) (which may therefore be written
as follows [(X1, X2, . . . , Xn, . . . ) ∈ B], where B is a measurable set of R

N),
and for all ε > 0, we can find n > 0 and Dn ∈ Fn = σ(X1, X2, . . . , Xn)
such that6 P (DnΔA) < ε. In fact, his explanation is to say that measurable
sets inside the infinitely dimensional cube are obtained by “M. Lebesgue’s
constructions” from the “intervals” of the cube, which are the sets of the

5 i.e. the smallest σ-algebra which allows all of them to be measurable
6 Δ indicates the symmetric difference: DnΔA = (Dn ∪ A) \ (Dn ∩ A)
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type ]a0, b0[×]a1, b1[× · · ·×]an, bn[×[0, 1] × [0, 1] . . . , in the same way as the
Borel sets of R are built from the real-valued open intervals; and we know
that for any element A ∈ B([0, 1]), there exists a finite collection of intervals
]α0, β0[, . . . , ]αm, βm[ such that λ(AΔ∪mk=0]αk, βk[) < ε (where λ is Lebesgue’s
measure on R).

Let now E an element of G. Let us note that the independence of the
(Xn)n≥1’s allows us to write that ∀n, P (E | Fn) = P (E). LetN andDN ∈ FN
such that P (EΔDN ) < ε (and so, in particular, P (DN ) > P (E) − ε). Then,
we have:

ε > P (DN ∩ Ec) = P (DN )P (Ec | DN ).

However, P (Ec | FN ) = 1 − P (E | FN ) = 1 − P (E) = P (Ec), thus P (Ec |
DN) = P (Ec), hence

ε > P (DN )P (Ec) > (P (E) − ε)(1− P (E)) > P (E)(1 − P (E))− ε

and so P (E)(1 − P (E)) < 2ε. This is true for all ε > 0, thus P (E)(1 −
P (E)) = 0. �

3.3 Limit theorems and series
of independent random variables

The direction in which Kolmogorov will develop his first works in Probability,
undoubtedly guided by his elder Khinchin7, may be found to be in continuity
with the former studies which had specified the conditions of validity of the
limit theorems (in particular the law of large numbers) for sums of random
variables throughout the nineteenth century. The first paper, which goes back
to 1925 [KK25] and which is the only article jointly written by Kolmogorov
and Khinchin, is remarkable in the way that it introduces a number of tech-
niques which will be at the base of some later developments of the theory of
probability, in particular in the study of the results of convergence for mar-
tingales. This first work relates to the convergence of series of independent
random variables. The main result is stated as follows (in modern terms):

Theorem 2. Let (Xn)n≥1 a sequence of centered (i.e. of 0 expectation) inde-
pendent real-valued random variables. Let us suppose that

∑

n≥1

E(X2
n) < +∞.

Then
∑

n

Xn converges almost surely (a.s.), i.e. with probability 1.

The proof suggested by Kolmogorov is based on a famous inequality which is
named after him today:

7 One also spells: Khintchine
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Lemma 1 (Kolmogorov’s inequality). Let Sn = X1 + · · ·+Xn. Then

P ( max
1≤k≤n

| Sk |≥ ε) ≤
E(S2

n)
ε2

· (3.1)

Proof. We write

{ max
1≤k≤n

| Sk |≥ ε} =
n⋃

p=1

Ap

where
Ap = {| S1 |< ε, | S2 |< ε, . . . , | Sp−1 |< ε, | Sp |≥ ε}.

Note that the Ap’s form a partition of the entire probability space and that
for all 1 ≤ p ≤ n, Sn − Sp is independent from Sp1IAp and has 0 expectation.
Therefore, for 1 ≤ p ≤ n,

E(S2
n1IAp) = E((Sn − Sp)21IAp) + E(S2

p1IAp) ≥ ε2P (Ap)

and summing with respect to p, E(S2
n) ≥ ε2P ( max

1≤k≤n
| Sk |≥ ε). �

It is only a few years later, in a note for the Comptes Rendus de l’Académie
des Sciences (CRAS) of Paris in 1930 [Kol30], that Kolmogorov will obtain
from the previous result his most famous consequence, that is to say this
nowadays classical version of the strong law of large numbers:

Corollary 1. Let us suppose that the variables Xn are independent and cen-

tered. We write E(X2
n) = bn and we suppose that

∞∑

n=1

bn
n2

< +∞. Then

σn =
Sn
n
→ 0, a.s.

Proof. First of all, let us note that for all fixed N > 0,

lim n | σn |= lim n
| Sn − S2N |

n
,

where lim n indicates the superior limit for n→ +∞. Moreover, it is obvious
that:

{lim n |
Sn − S2N

n
|> ε} ⊂ ∪n≥2N {| Sn − S2N

n
|> ε}

⊂ ∪m≥N{ max
2m≤k≤2m+1

| Sk − S2N

k
|> ε}

⊂ ∪m≥N{ max
2m≤k≤2m+1

| Sk − S2N

2m
|> ε}.
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Therefore, for all ε > 0 and all N > 0:

P
(
lim n | σn |> ε

)
= P

(
lim n

| Sn − S2N |
n

> ε

)

≤
∞∑

m=N

P

(
max

2m≤k≤2m+1
| Sk − S2N |> ε2m

)
≤ 1
ε2

∞∑

m=N

1
22m

2m+1∑

k=2N +1

bk

=
1
ε2

∞∑

i=N

⎛

⎝
∑

m≥i

1
22m

⎞

⎠
2i+1∑

k=2i+1

bk ≤
16
3

1
ε2

∑

n≥2N

bn
n2
·

By hypothesis, the last term can be made as small as we like, and so
lim nσn = 0 a.s. �

Remark 1. The independence of the Xn variables occurs twice in this proof:
first when we apply Kolmogorov’s inequality, and secondly when we write

E
(
(S2m+1 − S2N )2

)
=

2m+1∑

k=2N +1

bk

(using the additivity of the variance for non-correlated variables).

As mentioned above, the result of Lemma 1 and its proof can directly be
applied to the case of discrete martingales8:

Corollary 2. Let (Mn)n≥1 denote a square integrable martingale such that
E(Mn) = 0. Then

P ( max
1≤k≤n

|Mk |≥ ε) ≤
E(M2

n)
ε2

· (3.2)

It is easily proven that (3.2) may be strengthened a little, in the form of the
important Doob inequality: if (Mn)n≥1 is a square integrable martingale such
that E(Mn) = 0, we have

E[ max
1≤k≤n

(Mk)2] ≤ 4E[M2
n].

As we know, the theory of martingales has, after Doob’s works, invaded the
scene of contemporary probability theory. In order to illustrate the strength
of the inequality (3.2) and the notion of martingale, let us prove the following
result and its corollary.
8 Let us recall that a discrete martingale is a sequence (Mn)n≥1 of integrable ran-

dom variables such as, for all n, the expectation of Mn+1, knowing all the previous

values, is equal to the last one: E

(
Mn+1

∣∣∣M1, . . . , Mn

)
= Mn. (The martingale

is called square integrable, or etc. if each Mn satisfies this property.)
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Proposition 1. Let (Mn) be a L2 martingale (i.e. a square integrable mar-
tingale) such that supnE(M2

n) < +∞. Then Mn converges, at the same time
in L2 and a.s., towards a random variable M.

Proof. It is easy to show the convergence in L2 by proving that (Mn)n≥1 is
a Cauchy sequence in L2. The interested reader can refer to any elementary
course on martingales. Let us now deduce the a.s. convergence.

Let ε > 0. For each p > 0, let us write Vp = supn≥p | Mn −Mp |. As
(Mn −Mp)n≥p is a square integrable martingale, we have according to (3.2)
for all N

P ( max
p≤k≤N

|Mk −Mp |≥ ε) ≤
E((MN −Mp)2)

ε2
· (3.3)

As mentioned above, (Mk)k≥0 is a Cauchy sequence in L2 and so, for each
given m > 0, we can choose pm such that ∀N ≥ pm, E((MN −Mpm)2) ≤
ε2/2m. Therefore, passing to the limit in (3.3) when N → +∞: P (Vpm ≥ ε) ≤
1/2m. According to the Borel-Cantelli Lemma, a.s. there exists m > 0 such
that Vpm < ε i.e. ∀n ≥ pm, | Mn −Mpm |< ε, which is equivalent to saying
that a.s. (Mn) is a Cauchy sequence in R. �

Corollary 3. Let (Zn)n≥1 a sequence of independent random variables with
the same Bernoulli law P (Z = 1) = P (Z = −1) = 1

2 . We consider the
random walk on Z: S0 = 0, Sn = Z1 + · · · + Zn. Let a > 0 an integer and
τ = inf{n ≥ 0, Sn = a} the first passage time of a. Then the Laplace transform
of the law of τ is given for all θ ≥ 0 by

E[(cosh θ)−τ ] = e−θa.

Proof. We only indicate the broad outline of the proof, leaving the details to

the interested reader (see e.g. [BMP01]). Let Xθ
n =

eθSn

(cosh θ)n
. We verify that

it is a martingale and that9 (Xθ
n∧τ )n≥1 is a L2 martingale, which converges

a.s. and in L2 towards the variable W θ = eθa

(cosh θ)τ 1Iτ<+∞. Passing to the limit
as θ → 0, which is made possible by dominated convergence, we obtain that
P (τ < +∞) = 1, and thus the desired result. �

In 1924, Khinchin [Khi24] had proven a result which brought a radical
precision to the law of large numbers, the law of the iterated logarithm. The
generalization of Khinchin’s result by Kolmogorov in 1929 ([Kol29]) was one
of his greatest achievements.

Theorem 3. Let (Xn)n≥1 a sequence of independent real-valued random vari-
ables. Let us suppose that for all n, E(Xn) = 0 and bn = E(X2

n) < +∞. We

9 n ∧ τ means min{n, τ}, the smallest number of n and τ
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let Bn =
n∑

k=1

bk (that is Bn = E(S2
n)). If Bn → +∞ and | Xn |≤ Mn =

o(
√

Bn
ln lnBn

), we have a.s.

lim
Sn√

2Bn ln lnBn
= 1.

Today, Kolmogorov’s proof still remains very much up to date, as it introduces
techniques, in particular of large deviations, which became fundamental in the
study of many limiting phenomena in probability theory. We will only show
the less technical part of the result, leaving the reader consult one of the
innumerable texts which present the complete proof (e.g.[Bil95]).

Let us note, for ε > 0, φε(n) = (1 + ε)
√

2Bn ln lnBn; we shall prove that
P (Sn ≥ φε(n), infinitely often) = 0. According to Borel-Cantelli’s Lemma, it
suffices to prove that for a well-chosen subsequence nk ↑ +∞, we have

∞∑

k=1

P (max
n≤nk

Sn ≥ φε(nk−1)) <∞. (3.4)

As mentioned above, we will obtain the result thanks to the following lemma
which gives some large deviations estimates for the sequence (Sn).

Lemma 2. Let x ≥ 0.

(i) If x ≤ Bn/Mn then P (Sn > x) < e−( x2
2Bn

)(1− xMn
2Bn

)

(ii) If x ≥ Bn/Mn, then P (Sn > x) < e−
x

4Mn

(iii) P ( max
1≤k≤n

Sk ≥ x) ≤ 2P (Sn > x−
√

2Bn).

Proof.
Let us fix n and in order to simplify the writing, this index n will be

omitted in the next lines.
Let a > 0 such that aM ≤ 1. Then,

E
(
eaXk

)
= 1 +

∑

r≥2

E

(
arXr

k

r!

)
≤ 1 +

a2bk
2

∑

r≥2

2
ar−2M r−2

r!

≤ 1 +
a2bk

2

(
1 +

aM

2

)
< exp

[
a2bk

2

(
1 +

aM

2

)]
,

and thus: E(eaS) =
n∏

k=1

E(eaXk) < exp
[
a2B

2

(
1 +

aM

2

)]
.

As P (S > x) < E(
eaS

eax
) (for all a > 0), we obtain the inequality P (S > x) <

exp[−ax+ a2B
2 (1 + aM

2 )] from which we easily deduce the points (i) and (ii)
by taking successively a = x/B and a = 1/M .
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As for the point (iii), let us note U = max1≤k≤n Sk, and that (U ≥ x)
is the union of the events Ek = (S1 < U, . . . , Sk−1 < U, Sk = U ≥ x) for
1 ≤ k ≤ n.

Thus, we have

P (S > x −
√

2B) ≥
n∑

k=1

P (Ek ∩ (S > x −
√

2B)) ≥
n∑

k=1

P (Ek ∩ (S > U −
√

2B))

=

n∑

k=1

P (Ek)P (S > U −
√

2B | Ek) =

n∑

k=1

P (Ek)P (S − Sk > −
√

2B | Ek).

But S − Sk is independent of Ek, and therefore this last expression is also

=
n∑

k=1

P (Ek)P

(
n∑

i=k+1

Xi > −
√

2B

)
≥

n∑

k=1

P (Ek)P

⎛

⎝
(

n∑

i=k+1

Xi

)2

< 2B

⎞

⎠ .

Now,

1− P
(

(
n∑

i=k+1

Xi)2 < 2B

)
= P

(
(

n∑

i=k+1

Xi)2 ≥ 2B

)
≤ 1

2B

n∑

i=k+1

bi ≤
1
2
,

and hence

P (S > x−
√

2B) ≥ 1
2

n∑

k=1

P (Ek) =
1
2
P (U ≥ x). �

From Lemma 2, we deduce (3.4) for some well-chosen subsequence (nk).
Indeed, let us choose these integers such as for all k, Bnk−1 ≤ (1+ τ)k ≤ Bnk

.
From Lemma 2 (i)-(ii), we obtain, by using the hypotheses, for all μ > 0, and
k large enough (such that Mnk

< μ
1+ε

√
2Bnk

/ ln lnBnk
):

P (Snk
> φε(nk)) < [k ln(1 + τ)]−(1+ε)2(1−μ).

Then, choosing μ such that (1 + ε)2(1 − μ) > 1, we have
∑∞

k=1 P (Snk
>

φε(nk)) <∞. Thus, we conclude by applying Lemma 2 (iii) and the fact that√
2Bnk

φε(nk) → 0. �

3.4 Processes in continuous time

In the beginning of the years 1930, a great number of probabilistic works of the
Soviet school are related to the study of the stochastic processes in continuous
time, meeting thus in particular the needs in physics or aiming at describing
some “social phenomenons”. The axiomatization due to Kolmogorov, which
we commented on above, brought an essential element to the establishment of
this theory. The theorem of construction of probability measures on a space
of infinite dimension shows that the law of a stochastic process in continuous
time is given in a unique way starting from the family of the finite-dimensional
marginal laws of the process in question.
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3.4.1 Chapman-Kolmogorov’s equation

The first family of processes to which Kolmogorov, as a good heir to the
Russian school of probability, turns naturally to, is that of the Markov pro-
cesses, i.e. those which satisfy the property (known as the Markov property)
of independence of the future with respect to the past conditionally to the
knowledge of the present. The article Über die analytischen Methoden in der
Wahrscheinlichkeitsrechnung [Kol31] sets definitely the analytical bases of the
theory of Markov processes.

In this fundamental article published in 1931, the entire study of the pro-
cess is focused around the function:

P (s, x, t, A)

which represents the probability such that at time t the random phenomenon
is in one of the states of the set A, if it is in the state x at time s, prior to t
(0 ≤ s < t). As the necessary measurability assumptions are supposed to be
satisfied, this function must verify the integral equation

P (s, x, t, A) =
∫

E

P (s, x, u, dy)P (u, y, t, A) , for all u ∈]s, t[ , (3.5)

where E stands for the set of all the possible states of the process. Equation
(3.5), commonly called today Chapman-Kolmogorov’s equation (Chapman
had indeed noted it in a report [Cha28] on Brownian Motion in 1928), is
the analytic translation of Markov’s property and the measures P (s, x, t, dy)
represent the transition probabilities of the process: if we denote by (Xt)t≥0

this process, then, for all measurable A (for the measure dy):

P (s, x, t, A) = P (Xt ∈ A |Xs = x) .

However, as Kolmogorov’s article is purely analytical, as we can easily see from
its title, it doesn’t mention any pathwise realizations of the random process.

Equation (3.5) can’t be entirely solved in an explicit way in the too global
framework in which it is posed. Thus, Kolmogorov seeks conditions of regular-
ity on the probabilities P (s, x, t, dy) which would make it possible to obtain
a more accessible form. Eager to use the new techniques of analysis related
to Lebesgue’s integral, he naturally focuses on the case where P (s, x, t, dy) is
absolutely continuous, with density f(s, x, t, y) ≥ 0, according to Lebesgue’s
measure.

Equation (3.5), which is satisfied by the transition probabilities
P (s, x, t, dy), translates for their densities as:

∫ ∞

−∞
f(s, x, t, z) dz = 1

∫ ∞

−∞
f(s, x, u, z)f(u, z, t, y) dz = f(s, x, t, y) ,
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for all u ∈]s, t[ and all y ∈ R. Therefore, to obtain local conditions starting
from (3.5), the natural idea is to realize a Taylor development of f , which
needs regularity conditions on f and assumptions on the moments.

Kolmogorov asks that for all s, t, y, f(s, x, t, y) admits third order deriva-
tives on x and on y which are uniformly bounded on s and t, on any set of
the type {s, t : s − t > k}, k > 0. Besides, under the following assumptions
for the moments:

for all t ≥ 0, lim
Δ→0

∫ ∞

−∞
|y − x|i f(t, x, t+Δ, y) dy = 0 , i = 1, 2, 3, (3.6)

lim
Δ→0

∫∞
−∞ |y − x|3 f(t, x, t+Δ, y) dy

∫∞
−∞ |y − x|2 f(t, x, t+Δ, y) dy

= 0 , (3.7)

he shows the existence of the limits

A(s, x) = lim
Δ↓0

1
Δ

∫ ∞

−∞
(y − x)f(s, x, s+Δ, y) dy , (3.8)

B2(s, x) = lim
Δ↓0

1
Δ

∫ ∞

−∞
(y − x)2f(s, x, s+Δ, y) dy , (3.9)

which he calls respectively the infinitesimal mean and the infinitesimal vari-
ance of the process and which will be known in the future, in the diffusions
case, as the drift coefficient and diffusion coefficient. Thus, from the (3.5), the
existence of the limits (3.8) and (3.9) and under the differentiability assump-
tion of f mentioned previously, Kolmogorov obtains the two following partial
differential equations:

∂

∂s
f(s, x, t, y) = −A(s, x)

∂

∂x
f(s, x, t, y)−B2(s, x)

∂2

∂x2
f(s, x, t, y) , (3.10)

∂

∂t
f(s, x, t, y) = − ∂

∂y
[A(t, y)f(s, x, t, y)] +

∂2

∂y2
[B2(t, y)f(s, x, t, y)] . (3.11)

The importance of these equations is such that one can consider them as being
at the origin of the modern theory of stochastic processes. Let us give e.g. the
main arguments of the proof of the first equation, which the author calls first
fundamental differential equation and which is now known as the backward
equation (the second being the forward equation).

Proof of equation (3.10). If we apply Taylor-Lagrange’s formula to the 3rd

order in the variable z on the function f(s + Δ, z, t, y) and at the points x
and z, we obtain for s < s+Δ < t,

f(s, x, t, y) =
∫ ∞

−∞
f(s, x, s+Δ, z)f(s+Δ, z, t, y) dz

=
∫ ∞

−∞
f(s, x, s+Δ, z)[f(s+Δ,x, t, y)
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+
∂

∂x
f(s+Δ,x, t, y)(z − x) +

∂2

∂x2
f(s+Δ,x, t, y)

(z − x)2
2

+
∂3

∂x3
f(s+Δ,α, t, y)

(z − x)3
6

] dz ,

with α = x+ c(z − x), in the case where c is such that 0 < c < 1. Thus, if we
apply the notations

a(s, x,Δ) =
∫ ∞

−∞
(y − x)f(s, x, s+Δ, y) dy ,

b2(s, x,Δ) =
∫ ∞

−∞
(y − x)2f(s, x, s+Δ, y) dy ,

c(s, x,Δ) =
∫ ∞

−∞
|y − x|3f(s, x, s+Δ, y) dy ,

we can write, under the boundedness assumption on the third order derivative,
that for a value C independent from Δ and for θ such that |θ| < C,

f(s, x, t, y) = f(s+Δ,x, t, y) +
∂

∂x
f(s+Δ,x, t, y)a(s, x,Δ)

+
∂2

∂x2
f(s+Δ,x, t, y)

b2(s, x,Δ)
2

+ θ
c(s, x,Δ)

6
,

which brings us immediately to the finite difference formula

f(s + Δ, x, t, y) − f(s, x, t, y)

Δ
= − ∂

∂x
f(s + Δ, x, t, y)

a(s,x, Δ)

Δ

− ∂2

∂x2
f(s + Δ, x, t, y)

b2(s, x, Δ)

2Δ
− θ

c(s, x,Δ)

6Δ
.

To conclude, let us note that under the above assumptions, the ratio
c(s, x,Δ)/Δ tends towards 0 when Δ tends towards 0. �

As we already pointed out, the study of “ random movements” whose
law is governed by the (3.5) had already been outlined by Chapman in
1928 ([Cha28]) in a context of theoretical physics. The name of “Chapman-
Kolmogorov” equation should not let one believe however that it was the only
occasion, before the article of 1931, when this equation appeared. Kolmogorov
himself, in this article, mentions a particular case studied by Louis Bachelier
in 1900 ([Bac00]). He underlines, in a section that he devotes to the work
of Bachelier, that the equation (3.11) had been written in his work of 1900
without however having been proven, in the case where the process is homo-
geneous in space, i.e. when the densities f(s, x, t, y) only depend on s, t and
on the difference y − x. The equation appears also in the works of Marian
Smoluchovski about the Brownian motion during the years 1910.

Some continuations of the article Über die analytischen Methoden in der
Wahrscheinlichkeitsrechnung [Kol31] appeared shortly after its publication on
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behalf of other probabilists like Bernstein, to whom Kolmogorov’s equations
inspired his theory of the stochastic differential equations in 1932. However,
this theory is based on the discrete model and only allows to obtain weak so-
lutions in the continuous case. Another important work was that of Wolfgang
Doeblin, carried out in 1940. Doeblin sent it whilst at war (where he died) to
the Académie des Sciences de Paris, in a sealed envelope which wasn’t opened
until 2000 ([Doe40])10. In this manuscript, Doeblin, very much ahead of his
time, considers the pathwise aspects of the stochastic processes. More exactly,
he establishes links between the strictly analytical point of view of Kolmogorov
and that of Lévy who concentrates primarily on the paths construction and
the fine properties of the processes, and especially of the Brownian motion, by
purely probabilistic methods which often left his contemporaries perplexed.
Doeblin builds equations very close to Itô’s stochastic differential equations
established some ten or fifteen years later and whose solutions are Brownian
motions with a modified temporal variable: if the law of (Xt) satisfies the
(3.5), then

Xt = x+ βH(t) +
∫ t

0

A(s,Xs) ds ,

where β is a real-valued Brownian motion and H the time change

H(t) =
∫ t

0

B2(s,Xs) ds.

This pathwise vision of processes offers then quite more than the analytical
forward and backward (3.10) and (3.11). It allows Doeblin to establish results
on the regularity of trajectories, the comparison of solutions, the properties
of iterated logarithm, the functional central limit theorems and especially a
preliminary version of the formula of change of variable that Itô will obtain
a few years later ([Itô44]) and which will inaugurate the era of stochastic
calculus itself.

To establish his formula, Doeblin considers a function ϕ(t, x) of class C1,2

(i.e. of class C1 with respect to t and C2 with respect to x) and increasing
with respect to x, which ensures quite easily that the law of the process
Yt = ϕ(t,Xt) is a solution of Kolmogorov’s equation as soon as the law of
(Xt) is also a solution. Thus, he proves that (Yt) satisfies

Yt = ϕ(0, x) + γH(t) +
∫ t

0

A(s,Xs) ds ,

where γ is a real-valued Brownian motion and

Ht =
∫ t

0

B
2
(s,Xs) ds , B(s, x) =

(
∂

∂x
ϕ(s, x)

)
B(s, x)

A(s, x) =
∂ϕ(s, x)
∂x

A(s, x) +
∂

∂s
ϕ(s, x) +

1
2

(
∂2

∂x2
ϕ(s, x)

)
B2(s, x) .

10 The readers who may be less interested in the technical aspects can content
themselves by reading the article [BY03]
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It was necessary to await the construction of Itô’s stochastic integral dur-
ing and after the second world war to see the solutions of the (3.10) and (3.11)
under a new aspect. These new equations are satisfied11 by the process itself
and no longer only by its transition probabilities. If β stands for a real-valued
Brownian motion and if A(t, x) and B(t, x) are the functions defined as pre-
sented at the beginning of this section, then the transition probabilities of the
process X solution of the stochastic differential equation

dXt = A(t,Xt) dt+B(t,Xt) dβt , (3.12)

satisfy the (3.5), (3.10) and (3.11). An essential tool for the obtention of this
result was Itô’s formula mentioned above. In its most common current form,
this fundamental formula is stated as follows: if ϕ(t, x) is a function of class
C1,2 then

dϕ(t, Xt) =B(t,Xt)
∂

∂x
ϕ(t, Xt) dβt

+

(
∂

∂t
ϕ(t,Xt) + A(t,Xt)

∂

∂x
ϕ(t, Xt) +

1

2
B2(t,Xt)

∂2

∂x2
ϕ(t, Xt)

)
dt ,

(3.13)

where X solves the stochastic differential equation (3.12). These are the bases
of the stochastic calculus which was going to encounter several developments
during all the second half of the twentieth century.

From the years 1950 onwards, Doob’s martingale theory [Doo90], devel-
oped afterwards by P.A. Meyer and his school in Strasbourg, was going to
make it possible to weaken the conditions imposed until then on the func-
tions A(t, x) and B(t, x) to ensure the construction of stochastic processes.
An essential remark in this direction was the observation that under natu-
ral assumptions of local boundedness and lipschitzianity, the (3.12) admits
a single solution in law, in the sense that if β′ is another Brownian motion
(eventually defined on another probability space), a solution X ′ of:

dX ′
t = A(t,X ′

t) dt+B(t,X ′
t) dβ

′
t

follows the same law as X . This made it possible in the years 1970 to define
the concept of weak solution for the (3.12) which isn’t related to the specific
choice of a particular Brownian motion any longer. A famous theorem of Ya-
mada and Watanabe [YW71] asserts that pathwise uniqueness (the one which
corresponds to an equation directed by a fixed Brownian motion) implies the
unicity in law of the weak solutions. A powerful formulation was proposed by
Stroock and Varadhan [SV79] in terms of martingale problems. The associated

11 In the very particular way of stochastic differential equations which necessitate
the concept of Itô’s stochastic integral
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generator to the Markovian process (Xt) solution of (3.12) is the operator L
on C1,2 defined by:

Lf(t, x) =
1
2
B2(t, x)

∂2

∂x2
f(t, x) +A(t, x)

∂

∂x
f(t, x) +

∂

∂t
f(t, x).

Itô’s formula allows to express this definition by saying that for all f ∈ C1,2,

(Mt) =
(
f(t,Xt)−

∫ t

0

Lf(s,Xs)ds
)

t≥0

(3.14)

is a local martingale12.
Then, it becomes natural to define a solution for (3.12) as follows. Let

C = C(R+,R) the set of continuous functions from R
+ to R. We define the

canonical projections on C by Xt(ω) = ω(t) for ω ∈ C and the canonical
filtration by Ct = σ(Xs, s ≤ t), t ≥ 0. Thus, a solution of (3.12) is a probability
P on (C, (Ct)) such that under P the processes defined by (3.14) are local
martingales.

The most interesting aspect of the work of Stroock and Varadhan is that
under very weak conditions (approximately, the continuity of the functions A
and B), they showed that the preceding martingales problem admits a solu-
tion P . Under this probability, the canonical process satisfies the Markovian
properties which were at the origin of Kolmogorov’s studies. The reader in-
terested by these subjects can consult with interest the important treatise of
Jacod [Jac79].

3.4.2 Processes with independent and stationary increments

Among the processes whose laws verify Chapman-Kolmogorov’s equation
(3.5), there is a very important family that Lévy started to study at the be-
ginning of the years 1930: those where functions f(s, x, t, y) are homogeneous
in time and space, i.e. depend only on the differences t− s and y−x. In other
terms, we are talking about the processes with independent and stationary in-
crements for which Kolmogorov attempts to characterize the law in an article
edited in two parts in 1932: Sulla forma generale di un processo stocastico
omogeneo [Kol32a] and Ancora sulla forma generale di un processo omogeneo
[Kol32b]. He simply considers a “random time function” X(λ), where λ ≥ 0
represents the time variable, such that for all λ1 and λ2, (λ2 ≥ λ1) the dif-
ference X(λ2) − X(λ1) is independent from (X(λ), λ ≤ λ1) and the law of
which only depends on λ2 − λ1, i.e. if we note Δ = λ2 − λ1,

ΦΔ(x) = P (X(λ2)−X(λ1) < x) = P (X(λ2 − λ1) < x) , for all x ∈ R.

12 I.e. there exists a sequence of a.s. finite stopping times (Tn), increasing towards
+∞, such that for all n, the process (Mt∧Tn) is a martingale
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Then, he discovers that the relation

ΦΔ1+Δ2(x) =
∫ ∞

−∞
ΦΔ1(x − y) dΦΔ2(y) ,

is a particular case of the (3.5). Nevertheless, we can notice that at that time,
these processes aren’t related to Markov processes, which are the subject of
the study mentioned above. In fact, this formalization will only appear in the
years 1950.

The aim of the article of 1932 is, according to Kolmogorov himself, to
generalize some results given by Bruno de Finetti [Fin30] in the case where
the laws given by the repartition functions ΦΔ admit second order moments,∫
x2 dΦΔ(x) <∞. We will use the following notations:

mΔ =
∫
xdΦΔ(x) , and σ2

Δ =
∫

(x−mΔ)2 dΦΔ(x) .

Thus Kolmogorov obtains a particular case of the famous Lévy-Khinchin’s
formula: if ψΔ(t) =

∫
eitx dΦΔ(x) then ψΔ(t) = [ψ1(t)]Δ and

logψ1(t) = itm1 −
σ2

0

2
t2 +

∫ ∞

−∞

(
eitx − 1− itx

1 + x2

)
1 + x2

x2
G(dx) , (3.15)

where G is a finite measure such that G({0}) = 0 and where m1 ∈ R, σ2
0 ≥ 0.

This formula is commonly attributed to Lévy and Khinchin who obtained its
final version in 1934 ([Lév34]) and 1937 ([Khi37]), although, as we have seen,
de Finetti and Kolmogorov had already established it in particular cases. More
precisely, the result given by Kolmogorov is the following.

Theorem 4. When the law given by the repartition function ΦΔ has a second
order moment, we have

logψ1(t) = itm1 −
σ2

0

2
t2 +

∫ ∞

−∞
π(x, t) dF (x) , (3.16)

where m1 ∈ R, σ2
0 ≥ 0, π(x, t) = (eitx − 1 − itx)/x2 and where the measure

dF (x) is defined by an increasing and bounded function F .

The previous formulae only concern unidimensional laws of the random func-
tion (X(λ)); consequently, it would be better to talk about the characteriza-
tion of indefinitely divisible laws13 rather than of a result on processes with
independent and stationary increments. Nevertheless, let us note that at that
time, this terminology didn’t exist.

13 A law of probability P is said to be indefinitely divisible if, for all n, it is the n-th
convolution power of a law μn. That amounts to saying that P is the law of the
sum of n real-valued independent random variables with the same law μn
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Kolmogorov’s proof: First of all, we verify that ψΔ is continuous with respect
to Δ. Indeed, for Δ ≤ 1/n, we have σ2

Δ = σ2
1/n − σ2

1/n−Δ ≤ σ2
1/n = (1/n)σ2

1 ,
and so σ2

Δ → 0 when Δ → 0. Consequently, ψΔ(t) → 1 when Δ → 0. We
conclude thanks to the equality ψΔ1+Δ2(t) = ψΔ1(t)ψΔ2(t). The continuity
of ψΔ in Δ allows to show that the equality

ψΔ(t) = [ψ1(t)]Δ ,

which is true for all rationals Δ, is also verified for all reals Δ. The author
deduces then (using de Finetti’s proof) that

logψ1(t) = lim
Δ↓0

1
Δ

[ψΔ(t)− 1] .

Moreover, we have

1
Δ

[ψΔ(t)− 1] = itm1 +
1
Δ

∫ ∞

−∞
(eitx − 1− itx) dΦΔ(x) .

Let us note FΔ(x) = 1
Δ

∫ x
−∞ y2 dΦΔ(y), so that

1
Δ

∫ ∞

−∞
(eitx − 1− itx) dΦΔ(x) =

∫ ∞

−∞
π(x, t) dFΔ(x) .

A classical argument allows to justify that for any sequence Δn decreasing
towards 0, there exists a subsequence Δnk

such that the sequence FΔnk
(x)

converges when k tends towards +∞, towards the function F (x) in all points x
where the latter is continuous. Let us remark that F is an increasing function
such that:

0 = lim
Δ↓0

FΔ(−∞) ≤ F (−∞) ≤ F (∞) ≤ lim
Δ↓0

FΔ(∞) = σ2
1

and taking into account that at fixed t, π(x, t) → 0 when x→ ±∞, we obtain

lim
k→∞

∫ ∞

−∞
π(x, t) dFΔnk

(x) =
∫ ∞

−∞
π(x, t) dF (x) ,

which implies that

logψ1(t) = itm1 +
∫ ∞

−∞
π(x, t) dF (x) .

But as σ2
1 is finite, we have logψ1(t) = itm1 − σ2

1
2 t

2 + o(t2) (t → 0), and
according to the previous computation

logψ1(t) = itm1 −
t2

2
(F (∞)− F (−∞)) + o(t2) (t→ 0).
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This implies in particular that F (∞)−F (−∞) = σ2
1 . Finally we deduce from

the above that F (−∞) = 0 and F (∞) = σ2
1 ; thus F is entirely determined.

Now, let us prove that for all increasing (and left continuous) functions F ,
with values between F (−∞) = 0 and F (+∞) = σ2

1 < +∞, the function ψ1

given by logψ1(t) = itm1 +
∫∞
−∞ π(x, t) dF (x) is the characteristic function of

an indefinitely divisible law. For this purpose, let us consider a step function
T with steps:

ωk = T (xk+)− T (xk) ,

for a finite number of reals x1, x2, . . . , xn. We also suppose that T doesn’t
jump at point 0. We note σ2

1 = ω1 +ω2 + · · ·+ωn the sum of these jumps. Let
us also note logψ1(t) = itm1+

∫∞
−∞ π(x, t) dT (x), η = m1−

∑
k pk, pk = ωk/x

2
k

and χk(t) = exp(itxk). Then we can easily verify the identities
∫ ∞

−∞
π(x, t) dT (x) =

∑

k

pk(eitxk − 1− itxk) ,

logψ1(t) = itη +
∑

k

pk(χk(t)− 1) .

Thus, we deduce that

ψΔ(t) = (ψ1(t))
Δ = exp(itηΔ) +

∑
Δpk(χk(t)− 1)) .

Let us note that χk(t) and exp(itηΔ) are characteristic functions and conse-
quently ψΔ(t), as a product of characteristic functions, is a characteristic func-
tion itself. To conclude, let us note that we can find a sequence of step func-
tions Tn such that

∫∞
−∞ π(x, t) dTn(x) converges towards

∫∞
−∞ π(x, t) dF (x)

uniformly on any bounded interval. Thus, the corresponding characteristic
functions ψ

(n)

Δ (t) converge towards ψΔ(t). This implies that ψΔ is a character-
istic function, on one hand, and that this function verifies ψΔ(t) = (ψ1(t))Δ,
on the other hand. �

Kolmogorov completes this description of the law of processes with inde-
pendent increments by observing that if P1(x) =

∫∞
x
y−2 dF (y) et P2(x) =∫ x

−∞ y−2 dF (y) then P1(x) dλ (respectively P2(x) dλ) is the probability such
that the process X(λ) has a positive jump (respectively negative), of height
bigger than (respectively smaller than) or equal to x, during the time incre-
ment dλ. The measures P1 and P2 are respectively the restrictions to R+ and
R− of what will be called afterwards the Lévy measure of the process X(λ).

Following the works of Lévy, a number of authors during the years 1960 to
1980 such as Skorokhod, Zolotarev, Blumenthal, Getoor, Ray, Taylor, Fristedt,
Bingham, Pitman, Jacod,. . . studied the fine properties of the trajectories of
the processes with independent and stationary increments (now called Lévy
processes). Then at the beginning of the years 1990, the synthesis works of
Bertoin [Ber96] and Sato [Sat99] caused, among the probabilistic community,
a renewed interest for the study of Lévy processes. This was again reinforced
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with the discovery of new grounds of applications, like financial mathematics,
where the models using Lévy processes allow to compensate for the defects
of the model known as the Black-Scholes model involving the geometrical
Brownian motion.

3.4.3 Continuity and relative compactness criteria

It is remarkable that Kolmogorov also developed a certain number of tools for
the study of the pathwise properties of random processes. Among those, a very
effective criterion guaranteeing the pathwise continuity of the processes bears
his name. It was found by the Soviet mathematician in 1934 and presented
the same year during the Seminar at the University of Moscow. It was not
the subject however of any of his publications and it was Slutsky who stated
it and provided the first proof published in the Giornale dell’Istituto Italiano
dei Attuari in 1937 [Slu37], allotting its paternity to Kolmogorov. Twenty
years after this, Kolmogorov pointed out again to Chentsov an extension of
this criterion for discontinuous processes which he published in 1956 [Che56]
and which allows to conclude that the process in question does not have these
discontinuities of the second order14.

Theorem 5. If for a family of real-valued random variables (Xt, 0 ≤ t ≤ 1)
there exist three strictly positive constants γ, c and ε such that:

E(|Xt −Xs|γ) ≤ c|t− s|1+ε , (3.4.3.1)

then there exists a modification of X which is a.s. continuous.

Let us recall that a modification of a process X is a process X̃ such that for
all fixed t, X̃t = Xt, a.s. The following proof takes as a starting point the
proof of [RY91], p. 26; see also [DM75], Vol. V, Chap. XXIII, p. 332.

Proof: Let Dm the set of reals on [0,1] of the form 2−mi, where i = 0, 1, . . . , 2m

and D = ∪mDm the set of diadic numbers on [0,1]. Let Δm the set of pairs
(s, t) of D2

m such that |t− s| = 2−m. We note

Yi = sup
(s,t)∈Δi

|Xs −Xt| .

Since for all s, t ∈ Δi, E(|Xs −Xt|γ) ≤ c (2−i)1+ε and #Δi = 2i, we have for
all i,

E(Y γi ) ≤
∑

(s,t)∈Δi

E(|Xs −Xt|γ) ≤ c 2i(2−i)1+ε ≤ c 2−iε .

14 In a nearby order of ideas, let us also underline the contribution of Kolmogorov to
Skorokhod’s topology for the space of right continuous and left limited trajectories
[Kol56]
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Now, let s, t ∈ D, s �= t and m the integer such that 2−m−1 < |t− s| ≤ 2−m;
thus there exist finite sequences sm, sm+1, . . . , sp = s and tm, tm+1, . . . , tk =
t such that for all i = m,m + 1, . . . , p and j = m,m + 1, . . . , k, we have
(si, si+1) ∈ Δi+1, (tj , tj+1) ∈ Δj+1, (sm, tm) ∈ Δm and

Xs −Xt =
p−1∑

i=m

Xsi+1 −Xsi +Xsm −Xtm +
k−1∑

j=m

Xtj+1 −Xtj .

Thus, we deduce the inequalities

|Xs −Xt| ≤ Ym + 2
∞∑

i=m+1

Yi ≤ 2
∞∑

i=m

Yi .

Let α ∈ [0, ε/γ[. Let us define the random variable

Mα = sup{|Xt −Xs|/|t− s|α : s, t ∈ D, s �= t}.

Then, we deduce from the above that:

Mα ≤ sup
m∈N

{2(m+1)α sup
2−m−1<|t−s|≤2m

|Xt −Xs| : s, t ∈ D, s �= t}

≤ sup
m∈N

{2 · 2(m+1)α(
∞∑

i=m

Yi)} ≤ 2α+1
∞∑

i=0

2iαYi .

In the case where γ ≥ 1, this inequality implies that

E(Mγ
α)1/γ ≤ 2α+1

∞∑

i=0

2iαE(Y γi )1/γ ≤ 2α+1
∞∑

i=0

2iα2−iε/γ <∞

and when γ < 1, the same inequality applies to E(Mγ
α). In particular, the

variable Mα is finite and we have, for all s, t ∈ D, |Xt(ω)−Xs(ω)| < K(ω)|t−
s|α, where K(ω) is a constant which does not depend on s and t. Then, we
deduce that X is uniformly continuous on D (and even hölderian of order α).
The process X|D (i.e. X restricted to D) extends then in a unique manner to
a continuous process on [0, 1]:

X̃t(ω) = lim
s→t, s∈D

Xs(ω) , t ∈ [0, 1]

which is naturally also hölderian of order α. Finally, according to the as-
sumption, for all t ∈ [0, 1], lims→tXs = Xt in L1, thus X̃t = Xt, a.s. for all
t ∈ [0, 1]. �

As we can see, we have in fact proven a stronger result: under the previous
assumptions, there exists a modification of X with a.s. hölderian trajectories
of order α for all α ∈ [0, ε/γ[. In particular, the Brownian motion is (a.s.)
locally hölderian of order α for all α < 1/2.
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Theorem 5 admits some extensions such as the one of Chentsov mentioned
previously. There also exists a criterion of the same type for processes with
several indexes (Xt, t ∈ [0, 1]d); then, in this case, we write the assumption
(3.4.3.1) as follows:

E(|Xt −Xs|γ) ≤ c|t− s|d+ε.
The proof of this result is very close to the one we just gave and also applies
to processes with values in general Banach spaces.

In 1970, Garsia, Rodemich and Rumsey suggested another generalization
of this continuity criterion which is based on an entirely deterministic argu-
ment (see [SV79], p. 47 or [DM75], Vol. V, Chap. XXIII, p. 336). Let us briefly
expose their result:

Let f denote a Borelian function defined on a ball B of R
d, satisfying the

integral condition:
∫

B×B
Ψ

(
|f(v)− f(u)|
ϕ(|v − u|)

)
dudv

(def)= A <∞ ,

where Ψ and ϕ are two continuous functions on R+, null in 0, strictly increas-
ing and unbounded, such that the integrals

h(x, t) =
∫ t

0

Ψ−1(x/s2d) dϕ(s)

converge for all x > 0. Then the function f admits a continuous version f̃
(i.e. f(u) = f̃(u), a.e. in the sense of Lebesgue’s measure) which possesses on
the same ball B the modulus of continuity:

|f̃(v)− f̃(u)| ≤ 8h(kdA, 2|v − u|),

where the constant kd only depends on the dimension d.
It was then proven that this result is in fact a particular case of Sobolev’s

embedding theorems. The reader who may be interested in this topic can
refer to [DM75], Vol. V, Chap. XXIII, p. 334. It was possible to apply the
explicit form of this elaborated version of Kolmogorov’s criterion to obtain
fine continuity results for the local times of Lévy processes, and more generally
of semi-martingales, see [Bar85] and [BY81]. One can compare this form of
Kolmogorov’s criterion with the majorizing measures technique of Fernique,
Marcus, Talagrand,. . .

As one can easily imagine, the applications of Theorem 5 are numerous
and diverse. One of the most important is doubtlessly the relative compactness
criterion. Let us recall that a sequence of probability measures is said to be
(weakly) relatively compact if one can extract from any subsequence, a new
subsequence which converges weakly.

According to Prohorov’s theorem, a sequence of probability measures (Pn)
on a separable and complete space is relatively compact if and only if it is tight,
i.e. if for any ε > 0, there exists a compact K such that Pn(K) ≥ 1 − ε, for
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all n. This theorem presents a great interest, in particular when the relevant
probability space is the set of continuous paths on the positive half-line. Then,
let us denote by C the space of continuous functions on the positive half-line
and with values in R

d, which is fitted with the uniform convergence topology
and the Borelian σ-algebra. In order to prove that a sequence of measures (Pn)
on C converges weakly towards a measure P , we know that it suffices to verify
that it is relatively compact and that its finite dimensional marginals converge
towards the corresponding marginals of P . As C is separable and complete,
relative compactness is equivalent to the tension property. In general, the
convergence of the finite dimensional marginals can easily be stated. Relative
compactness is often a problem. A very useful criterion is obtained as a direct
consequence of Kolmogorov’s theorem exposed in Theorem 5. One can refer
to [Bil95] for a proof.

Corollary 4. If a sequence of continuous processes (Xn(t), t ≥ 0)15 satisfies

(i) The sequence of r.v.’s (Xn(0)) is tight,
(ii) There exist three strictly positive constants γ, c and ε such that for any n:

E(|Xn(t)−Xn(s)|γ) ≤ c|t− s|d+ε , (3.4.3.2)

then, the sequence of laws of the processes (Xn) is relatively compact.
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[Itô44] Itô, K.: Stochastic Integrals. Proc. Imp. Acad. Tokyo, 20, 519–524 (1944)
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