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1 Introduction
Kirchhoff’s matrix tree theorem is a combinatorial formula giving the number of
spanning trees in a finite graph. These lectures aim at proving this result and pre-
senting some important applications in probability theory and combinatorics. One
of the most famous of these applications we will present here is an expression for the
invariant distribution of irreducible finite state Markov chains. Direct applications
of the matrix tree theorem also allow us to derive explicit formulas for the number
of rooted multitype forests which can be obtained from a given set of labeled ver-
tices, with a given sequence of degrees. These expressions are extensions of Cayley’s
formulas. As a direct consequence of these enumeration formulas will compute the
distribution of the total progeny of a multitype Bienaymé-Galton-Watson (BGW)
forest, by distinguishing types. This result will naturally lead us to introduce a cod-
ing of multitype Bienaymé-Galton-Watson forests through multi-indexed sequences
of matrix valued random walks which extends the well known Lukasiewicz-Harris
coding of Bienaymé-Galton-Watson single type forests. Such coding multi-indexed
sequences can be seen as extensions of downward skip free random walks whose first
passage times have the same distribution as the total progeny of multitype BGW
forests. We will then see how coding sequences can be used to compute the distri-
bution of some functionals attached to multitype BGW forests such as the number
of vertices of a given degree.

Acknowledgements: I would like to warmly thank Maria Emilia Caballero and
Geronimo Uribe for giving me the opportunity to do this lecture in the Instituto de
Matemáticas of the UNAM, for the 9th school of probability and stochastic processes.
I am also much indebted to my PhD student Marine Marolleau for her careful reading
of the first proofs of these notes.

2 Some notation
This section aims at presenting some basic notions on graphs. Other definitions we
will be given along the lines. Henceforth the elements of E will be called the vertices
and will be thought of as integers from 1 to d, that is E = [d], where [d] := {1, . . . , d}.
A directed graph or a digraph on [d] is obtained by associating to [d] a set A ⊂ [d]× [d]
of directed edges which we will call the arcs, each arc joining some pair of vertices.
Since we only consider digraphs in these lectures, we will simply refer to them as
graphs. A graph on [d] with set of directed edges A will be denoted by G = ([d], A).
For two vertices i, j, the arc from i to j, if it exists, will be denoted by (i, j). In a
graph, there exits at most one arc from i to j. If there exists more than one directed
edge between two vertices, then G will be called a multigraph. We assume that there
are no loops in graphs and multigraphs, that is no arc directed from a vertex to itself.
We will say that there is a path from i to j if either the arc (i, j) exists or there are
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n ≥ 1 vertices i1, . . . , in such that the arcs (i, i1), (i1, i2),..., (in−1, in), (in, j) exist. In
the latter case if i = j, then the path is called a cycle. A graph is said to be connected
if for all i, j ∈ E, with i 6= j, there is a path from i to j. In the example below, one
has E = [6] andA = {(1, 2); (1, 4); (2, 3); (3, 4); (3, 5); (4, 5); (4, 6); (5, 3); (6, 1); (6, 4)}.
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Figure 1: A digraph and its weighted version

We will often consider weighted graphs by associating to each arc (i, j) ∈ A some
quantity xij. Then the Laplacian matrix of a weighted graph G = ([d], A) is the
matrix L = (xij)i,j∈[d], where xii = −

∑
j∈[d] xij.

By tree we mean a graph with no cycle. Such a tree is rooted if all edges are
directed toward a particular vertex called the root. If (i, j) is an arc in a tree, then
we say that j is the parent of i or that i is the child of j. A rooted plane tree is
a rooted tree which is embedded in the plane. It is equivalent to say that at each
generation, an order can be given to its vertices. A rooted plane forest is a finite
set of rooted plane trees whose roots have been ordered. In these notes we will only
consider rooted trees and rooted forests and we will often simply call them trees and
forests.

3 Finite state Markov chains and spanning trees

3.1 Discrete time Markov chains

Let E be a finite set with cardinality |E| = d ≥ 1 and (Ω,F ,P) be some probability
space. A discrete time Markov chain with state space E is a sequence of E-valued
random variables Y := (Yn)n≥0 defined on (Ω,F ,P) such that for all n ≥ 0 and all
elements i0, i1, . . . , in+1 of E satisfying P(Y0 = i0, . . . , Yn = in) > 0,

P(Yn+1 = in+1 |Y0 = i0, . . . , Yn = in) = P(Yn+1 = in+1 |Yn = in) . (3.1)

When the conditional probabilities P(Yn+1 = j|Yn = i), i, j ∈ E do not depend on
n, the Markov chain is said to be homogeneous. We will always assume that this is
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actually the case and we will denote by P = (pij)i,j∈E the transition matrix, that is

pij = P(Yn+1 = j |Yn = i) , i, j ∈ E .

The law of Y0 under P is called the initial law of Y . We will often denote it by µ.
Note that the law of a Markov chain is characterized by both its initial law and its
transition matrix. Indeed, it follows from (3.4) that for all i0, i1, . . . , in ∈ E,

P(Y0 = i0, . . . , Yn = in) = µ(i0)pi0i1pi1i2 . . . pin−1in . (3.2)

The chain Y is said to be irreducible if for all i, j ∈ E, i 6= j, there are n ≥ 1 and
i1, . . . , in−1 in E such that for i0 = i and in = j, P(Y0 = i0, . . . , Yn = in) > 0. For
n ≥ 1, let us denote by p(n)ij the entries of the matrix P n and set P 0 = I, where I
is the identity matrix of dimension d. Then we can prove by using (3.2) that Y is
irreducible if and only if for all i, j ∈ E, there is n ≥ 0 such that p(n)ij > 0.

For i ∈ E, we will denote by Pi the probability measure on (Ω,F) under which
the chain Y is issued from i, that is

Pi(A) := P(A |Y0 = i) , A ∈ F .

Then for any probability measure µ on E, we denote by Pµ the probability on (Ω,F)
under which the chain Y has initial distribution µ, that is

Pµ(A) :=
∑
i∈E

µ(i)Pi(A) , A ∈ F .

In particular one has Pi = Pδi and Pµ(Y0 = i) = µ(i). Moreover, for all n ≥ 0, the
law of Yn under Pµ is given by

Pµ(Yn = i) = µP n(i) , i ∈ E .

A probability µ on E is said to be invariant if the law of Y1 under Pµ is µ or
equivalently if µ is a left eigenvector of P associated to the eigenvalue 1, that is
µP = µ. Note that in this case, one has µP n = µ for all n ≥ 0 and the law of Yn
under Pµ is µ.

An irreducible Markov chain with invariant distribution µ is said to be time-
reversible or simply reversible if for all n, under Pµ, the sequence (Y0, . . . , Yn) has the
same law as the sequence (Yn, . . . , Y0). This property is equivalent to the following:

µipij = µjpji, for all i, j ∈ E.

Irreducible Markov chains with finite state space satisfy the following property.

Theorem 3.1. Let Y := (Yn)n≥0 be a Markov chain with finite state space. Assume
that Y is irreducible. Then there exists a unique invariant probability measure µ for
Y . Moreover, this distribution is given by

µ(j) = lim
n→∞

1

n

n−1∑
k=0

p
(k)
ij , for all i, j ∈ E . (3.3)
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We say that P is a primitive matrix if there exists n ≥ 1 such that p(n)ij > 0, for all
i, j ∈ E. Note that if P is primitive, then it is irreducible. When P is primitive,
Theorem 3.1 is a direct consequence of the Perron-Frobenius theorem.

Expression (3.3) means that starting from i, the mean number of visits to any
state j by Y up to time n − 1 converges toward µ(j). Note that if moreover P is
aperiodic then the sequence Y under Pi converges in law towards µ. This shows that
Markovian models satisfying those assumptions converge toward some equilibrium.
Then it is very important to determine an explicit form of this distribution in terms
of the transition matrix of the chain. This is what will be explained in the next
sections but before we need to recall the notion of continuous time Markov chain
which provides a more convenient framework for our purpose.

3.2 Continuous time Markov chains

A q-matrix on the set E is a squared d-dimensional matrix which we often denote by
Q = (qij)i,j∈E and satisfying:

1. 0 ≤ qij <∞, for all i, j ∈ E such that i 6= j,

2.
∑d

j=1 qij = 0, for all i ∈ E.

If d = 1, then by convention we set Q = 0. The transition probability function
associated to Q is the matrix valued function, defined on [0,∞), t 7→ P (t) given by

P (t) = etQ =
∞∑
n=0

(tQ)n

n!
, t ≥ 0 .

The entries of P (t) are denoted by pij(t) and are called the transition probabilities.
Then an E-valued continuous time Markov chain X = (Xt)t≥0 with transition prob-
ability function (P (t))t≥0 is a càdlàg continuous time stochastic process defined on
the probability space (Ω,F ,P) such that for all n ≥ 0, all elements i0, . . . , in+1 of E
and all real values 0 ≤ t0 < · · · < tn+1,

P(Xtn+1 = in+1 |Xt0 = i0, . . . , Xtn = in) = pinin+1(tn+1 − tn) . (3.4)

In particular, X satisfies the time homogeneous Markov property,

P(Xtn+1 = in+1 |Xt0 = i0, . . . , Xtn = in) = P(Xtn+1 = in+1 |Xtn = in) .

The initial law of X is the law of X0 under P. A continuous time Markov chain is
actually a jump process and we can derive from the Markov property that the times
elapsed in between the jumps are independent and exponentially distributed. Let us
denote by (Tn)n≥0 the ordered sequence of jump times of X, that is T0 = 0 and for
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n ≥ 1, Tn = inf{t ≥ Tn−1 : Xt 6= XTn−1}. For all i ∈ E, set qi =
∑

j 6=i qij. Then the
random sequence

Yn = XTn , n ≥ 0,

is an E-valued Markov chain whose transition matrix P is given by

pij =

{
qij/qi if i 6= j and qi 6= 0
0 if i 6= j and qi = 0

and pii =

{
0 if qi 6= 0
1 if qi = 0

. (3.5)

The discrete time Markov chain (Yn) is sometimes called the skeleton of the Markov
chain X. The Markov chain X (or equivalently the Q-matrix Q) is said to be irre-
ducible if for all i, j ∈ E such that i 6= j, there is n ≥ 1 such that q(n)ij > 0. It is clear
from (3.5) that Q is irreducible if and only if P is irreducible.

With a slight abuse of notation, we will also denote by Pi the probability measure
on (Ω,F) such that X starts from i at time t = 0 and for any probability measure
on E, we will denote by Pλ the probability measure under which X has initial law
λ. In particular, we have Pi(X0 = i) = 1, Pλ(X0 = i) = λi and the law of Xt under
Pλ is given by Pλ(Xt = i) = λP (t)i, that is the i-th coordinate of the row vector
λP (t). An initial law is said to be invariant for X if Pλ(Xt = i) = λP (t)i = λ(i), for
all t ≥ 0. It follows from the definition of the transition function P (t) that λ is an
invariant distribution if and only if

λQ = 0 . (3.6)

Then we derive from (3.5) that λ is an invariant distribution for X if and only if µ
is an invariant distribution for Y , where

µi = qiλi , i ∈ E . (3.7)

In particular if Q is irreducible then there exists a unique invariant distribution for
X. Moreover, one may obtain an expression of the invariant distribution directly
from the Q-matrix through the limit:

λj = lim
n→∞

(
1

n

n∑
k=0

ekQ

)
ij

, for all i ∈ E.

As well as in discrete time these expressions of the invariant distribution are not really
satisfactory since they are obtained as limits of sequences involving all the powers
of Q. The matrix tree theorem in Section 3.5 provides a much more exploitable
formula.

3.3 The Markov chain tree theorem

Any Q-matrix, naturally induces a digraph denoted G(Q) = (E,A(Q)) in the follow-
ing way: for all i, j ∈ E, (i, j) ∈ A(Q) if and only if qij > 0. When it is associated
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to a graph, a Q-matrix is also called the weighted Laplacian matrix of the digraph
(the Laplacian matrix of the graph is actually obtained from Q by replacing qij, for
i 6= j, by 1, see Section 3.5). It is plain that G(Q) is connected if and only if Q
is irreducible. The value qij is then called the weight of (i, j). A digraph which is
obtained from a Q-matrix in this way is called a weighted digraph. The weighted
digraph above is generated from the Q-matrix,

Q =


−4 2 0 2 0 0
0 −7 7 0 0 0
0 0 −5 3 2 0
0 0 0 −4 1 3
0 0 3 0 −3 0
1 0 0 5 0 −6

 .

A subgraph of a digraph G = (E,A) is a digraph G′ = (E ′, A′) such that E ′ ⊂ E
and A′ ⊂ A. Then note that a subgraph of a weighted digraph G(Q) is obtained
as G(Q′), where Q′ is a sub matrix of Q in which some entries have been replaced
by 0 and the diagonal has been properly diminished so that is it a Q-matrix. For
instance, the following subgraph of the weighted digraph presented in Figure 1,
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Figure 2: A subgraph of the weighted digraph in Figure 1.

is obtained from the Q-matrix,

Q′ =


−4 0 2 0 0
0 −5 3 2 0
0 0 −4 1 3
0 3 0 −3 0
1 0 0 0 −1

 .

A rooted tree is a connected digraph with no cycle such that all the arcs are
directed toward a particular vertex called the root. A rooted spanning tree of a
digraph is a rooted tree with the same set of vertices. In the example of Figure 1
there are 9 spanning trees rooted at vertex 5, see the figure below.
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Figure 3: The 9 spanning trees rooted at vertex 5.

The weight of the subgraph G′ = G(Q′) is obtained as the product of all the
weights of its edges, that is the product of all the positive entries of Q′. It is denoted
by w(G′) or w(Q′). More formally, with Q′ = (q′ij),

w(G′) =
∏

i,j:q′ij>0

q′ij .

The following result, known as the Markov chain tree theorem, provides an explicit
formula for the invariant distribution of any irreducible continuous time Markov chain
with finite state space, in terms of the weights of the spanning trees associated to its
graph. Let X = (Xt)t≥0 be such a Markov chain with state space E and Q-matrix
Q. For i ∈ E, let Ti be the set of spanning trees of G(Q) which are rooted at i and
define,

Σi =
∑
T∈Ti

w(T ) and Σ =
∑
i∈E

Σi .

Theorem 3.2. The Markov chain X is irreducible if and only if Σi > 0, for all
i ∈ E. When this is the case, the unique invariant distribution λ of X is given by,

λi = Σi/Σ , i ∈ E . (3.8)

Proof. The Markov chainX is irreducible if and only if its associated graph is strongly
connected. Then it is easy to check that a graph is strongly connected if and only if
for each i ∈ E there is a spanning tree rooted at i. In order to check that (λi)i∈E is
an invariant distribution, it is enough to show that (Σi)i∈E is an invariant measure
for X. Then according to (3.6), we have to prove that for all j ∈ E,∑

i 6=j

Σiqij = −Σjqjj . (3.9)

Since X is irreducible, qjj < 0, for all j. Then multiply the right hand side of (3.9)
by −

∑
k 6=j

qjk
qjj

= 1 and expand de sums Σi and Σj according to their definition. We
obtain ∑

i 6=j

∑
T∈Ti

qijw(T ) =
∑
k 6=j

∑
T∈Tj

qjkw(T ) . (3.10)
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It remains to convince ourself that this identity is true.
Let us first define a cycle-rooted tree as tree rooted at some vertex i to which

we attach an edge directed from i to any other vertex of this tree. Then note that
by removing from this cycle-rooted tree an edge (j, k) along the cycle containing i
(which actually is the only cycle), we obtain a new tree rooted at j.

1

4 6

2

3

5

Figure 4: A tree cycle-rooted

Now in formula (3.10), the terms qijw(T ) and qjkw(T ) are the weights of cycle rooted
trees whose cycle contains j. Then by performing the double sum

∑
i 6=j
∑

T∈Ti or
the double sum

∑
k 6=j
∑

T∈Tj one obtains the total weight of all cycle rooted trees
whose cycle contains vertex j. On the right hand side, we enumerate them through
the arc which is directed toward j, whereas on the left hand side we enumerate them
through the arc which is issued from j.

Then note that the same result can be obtained for discrete time Markov chains. Let
Y be such a chain on the finite state space E and let P be its transition matrix. The
notion of weighted directed graph associated to Y is defined in the same way as in
continuous time. The only difference in this case is that the digraph can have loops.
The weight of an arc (i, j) of a subgraph is then pij and the weight of the subgraph
is the product of all the weights of its arcs. Then let G(P ) be the directed graph of
Y , let T Pi be the set of spanning trees of G(P ) rooted at vertex i and let wP (T ) be
the weight of T ∈ T Pi . Define

ΣP
i =

∑
T∈T P

i

wP (T ) and ΣP =
∑
i∈E

ΣP
i ,

then the following result can be proved exactly in the same way as Theorem 3.2. Its
proof is left as an exercise.

Theorem 3.3. The Markov chain Y is irreducible if and only if ΣP
i > 0, for all

i ∈ E. When this is the case, the unique invariant distribution µ of Y is given by,

µi = ΣP
i /Σ

P , i ∈ E . (3.11)

Note that formula (3.11) can be recovered from formula (3.8) by using the relation
(3.7). Indeed, from (3.5), the weight of a spanning tree t of G(P ) rooted at i is
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wP (t) = w(t)/
∏

j 6=i qj. Hence ΣP
i /qi = Σi/q, where q =

∏
j qj.

The Markov chain tree theorem was first discovered in the 80’s by Leighton and
Rivest [14, 15], althought some particular form already existed from the 60’s. The
proof which is given here is excerpt from Ventcel and Freidlin [11].

Despite Theorems 3.2 and 3.3 provide explicit forms of the invariant measure,
the latter are not fully satisfactory since they bear on the sets of spanning trees of
the associated weighted graph. Determining these sets require some work, see for
instance Figure 2. However this result has a lot of applications. It was used by [1], [7]
and [21] to produce algorithms for building uniform spanning trees in a graph, which
leads to the construction of loop erased random walks in an infinite network. The
Kirchhoff’s formula which will be established in Subsection 3.5 complete Theorems
3.2 and 3.3 and allows us to compute the invariant measures in a direct way.

3.4 Lifting the Markov chain to its spanning trees

We will now see how to associate to any irreducible Markov chain (Xt)t≥0 on a finite
set E with Q-matrix Q, a Markov chain on the set of spanning trees of the graph
G(Q) = (E,A(Q)).

Let us first define the projection of a Markov chain. Let E ′ be a finite set and
p : E ′ → E be a surjective map. Let (X ′t)t≥0 be a Markov chain on E ′ with Q-matrix
Q′ = (q′ij)i,j∈E′ . Assume that for all j ∈ E,∑

m∈p−1(j)

q′km =
∑

m∈p−1(j)

q′lm , whenever p(k) = p(l).

Define for i, j ∈ E,
qij =

∑
m∈p−1(j)

q′km ,

where k is any element of E ′ such that p(k) = i. Then X = p(X ′) is a Markov chain
on E with Q-matrix Q = (qij)i,j∈E. Furthermore if ν is an invariant measure for X ′,
then µ defined by

µ(i) =
∑

k∈p−1(i)

ν(k)

is an invariant measure for X. This property is quite simple to check and is left as
an exercise. We will refer to it as the projection property of Markov chains.

We now define the lifting operation of the Markov chain (Xt)t≥0. Let T = ∪i∈ETi
be the set of all spanning trees of the graph G(Q). Assume that (Xt)t≥0 is irreducible
and define the map p : T → E which assigns to each tree t ∈ T its root, i.e. p(Ti) = i.
From the irreducibility of (Xt)t≥0, this mapping is surjective. Then let (XTt )t≥0 be
a Markov chain on T whose transition probabilities (qTst)s,t∈T are defined as follows:
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Let i ∈ E, s ∈ Ti and j ∈ E be such that qij > 0. Take out from s the unique edge
coming out from j and add to s the edge (i, j). One obtains a new tree t which is
rooted at j, i.e. t ∈ Tj. Then set qTst = qij and for all pair s 6= t which are not ob-
tained in this way, set qTst = 0. The transition rates qTst define a Q-matrix on the set T .

3

5

3

5

Figure 5: Lifting a transition between i = 5 and j = 3

It is easy to check from the projection property recalled above that X is the
projection of XT by the map p. Moreover, the above definition of QT induces a
natural pathwise construction of the chain XT from the paths of the original chain
X. More specifically, let i ∈ E and t ∈ Ti, then to each path of X with X0 = i
corresponds a unique path of XT such that XT0 = t.

Theorem 3.4. Let X be an irreducible Markov chain on the set E with Q-matrix
Q. The lifted Markov chain (XTt )t≥0 is irreducible and

λT (t) = w(t)/Σ , t ∈ T (3.12)

is the invariant distribution of XT .

Proof. Let us first prove that the Markov chain (XTt )t≥0 is irreducible. As noticed
before the statement of Theorem 3.4, for fixed i ∈ E and t ∈ Ti the pathXn(ω), n ≥ 0
with X0(ω) = i naturally induces a path XTn (ω), n ≥ 0 with XT0 (ω) = t. It is readily
seen that for i 6= j, the sets Ti and Tj are connected through XT . So it is enough
to prove that for any s, t ∈ Ti, if XT0 (ω) = t, then there is a path of XT which leads
to s.Let k be a leaf of s and call sk→i the branch leading from k to i in s. Then let
i→ k1 → · · · → kl → k be a path of X from i to k. Run X from i to k through this
path and then let X go back to i through the branch sk→i. Then XT equals a new
tree rooted at i and containing the path sk→i. Now run X from i to kl and go back
to i through the branch skl→i and so on until the branch sk1→i is constructed.

Repeating this procedure for each leaf of s we finally obtain a tree which is
composed of all branches going from the leaves of s to i, that is the tree s itself.

Then we now check that λT (t) is an invariant distribution for QT . We only need
to prove that for all t ∈ T ,

∑
s∈T w(s)qTst = 0, which is equivalent to∑

s∈T ,s 6=t

w(s)qTst = −w(t)qTtt .

11



Since (XTt ) is irreducible, qTtt > 0 and −
∑

l 6=t
qTtl
qTtt

= 1. Multiplying the right hand
side of the above equality by this last term gives,∑

s∈T ,s 6=t

w(s)qTst =
∑

l∈T ,l 6=t

w(t)qTtl . (3.13)

But for each neighbor s of t, there is a unique neighbor u of t such that w(s)qTst =
w(t)qTtu and this establishes a bijection in the set of neighbors of t. Summing overall
neighbors of t, we obtain,

∑
s∈T ,s 6=tw(s)qTst =

∑
u∈T ,u6=tw(t)qTtu, which is equation

(3.13).

This result was actually used by Anantharam and Tsoucas in [2] to provide a new
proof of the Markov chain tree theorem. Recently Biane and Chapuy, in [5] and [6]
have been interested in describing relations between the invariant distribution of a
Markov chain (Xt) and its lifted version (XTt ).

3.5 The matrix tree theorem.

In this section we shall prove a quite general version of Kirchhoff formula which is
known as the matrix tree theorem. The original result is dated from 1847, [12] and
the general form which is presented here is due to Tutte [20]. Recall that a graph is
a rooted forest if it consists in a disjoint union of rooted trees. When each vertex of
a rooted forest has a type i ∈ [d], we will call this forest a multitype rooted forest
or more specifically a d-type rooted forest. This matrix tree theorem regards special
d-type rooted forests, called elementary forests.

Definition 1. An elementary forest on [d], is a d-type rooted forest which contains
exactly one vertex of each type.

As all forests considered in this section are elementary forests, we simply call them
forests. The roots of all the trees composing a forest f will be called the roots of the
forest and this set will be denoted by roots(f). The digraph of Figure 6 is a forest
on the set E = [7] with roots(f) = {1, 5, 7}.

1

4

6

23

5 7

Figure 6: A forest f on [7] with roots(f) = {1, 5, 7}

For each couple of vertices i and j of E we define a variable xij and to each forest f
on E we attach the monomial xf which is obtained as the product of the variables

12



xij for all arcs (i, j) of f . For example, the monomial of the forest f in Figure 6 is

xf = x63x31x41x25 .

Note that a vertex of f is both a root and a leaf if and only if its index does not
appear in xf . In particular, if all vertices of f are leaves, then xf = 0. If f is a
weighted digraph with Laplacian matrix Q then by giving to each variable xij the
value qij, we see that the monomial xf corresponds to the weight of f . Note also that
the data of the monomial xf allows us to recover the forest f .

Now set as usual E = [d], let us use the notation x = (xij)i,j∈E and fix a subset
I ⊆ E. Then we define G(I)

d (x), the generating function of all the forests whose set
of roots is I, by

G
(I)
d (x) =

∑
f :roots(f)=I

xf .

By convention we set G(∅)
d (x) ≡ 0 and G(E)

d (x) ≡ 1. On the other hand, let us define
for d ≥ 2 the matrix

Hd(x) =


(x12 + · · ·+ x1d) −x12 −x13 . . . −x1d

−x21 (x21 + · · ·+ x2d) −x23 . . . −x2d
... . . . ...
−xd1 −xd2 −xd,d−1 . . . (xd1 + · · ·+ xd,d−1)

 ,

and set H1(x) ≡ 0. Note that by giving nonnegative values qij to the variables xij
the matrix Hd(x) corresponds to −Q where Q is the Q-matrix Q = (qij)i,j∈E.

The following result is known as the matrix tree theorem.

Theorem 3.5. The generating function G
(I)
d (x) of forests rooted at I satisfies the

equality
G

(I)
d (x) = det (H

(I)
d (x)) ,

where H(I)
d (x) is the squared matrix obtained by delating rows and columns which

indices belong to I in Hd(x) and where by convention we set det (H
(E)
d (x)) ≡ 1.

Proof. Note that for d ≥ 2, detH(∅)
d (x) ≡ 0 since the sum of the rows in Hd(x) is 0

and this is also true for d = 1 by convention. The proof will be done by induction on
d. For d = 1, the result follows by convention, since in this case we necessarily have
I = ∅ or I = E. Let us now assume that the result is true for d − 1, where d ≥ 2,
and for all I ⊂ E.

We will assume that I 6= ∅ and I 6= E, since the result is always true by convention
in these cases. Then first observe that both G(I)

d (x) and det (H
(I)
d (x)) are polynomial

of degree d − |I|. Indeed, for det (H
(I)
d (x)) we can show by induction, expending

this determinant along a row or a column that all monomials contain d− |I| terms.
Moreover, this determinant cannot be 0 for all x, since I 6= ∅. On the other hand,

13



a forest with d vertices and |I| roots contains d − |I| arcs, so that all monomials of
G

(I)
d (x) have d−|I| terms. Now note the following property of both polynomials: for

every monomial, there is j such that none of the variables xij, i = 1, . . . , d appear in
this monomial. (For G(I)

d (x) this is true for instance if j is a leaf of a forest F rooted
at I. Indeed, since there are no directed edges toward j, no variable xij occurs in
the monomial xF .) But this is clearly true anyway for both polynomials since they
are of degree d− |I| ≤ d− 1. Indeed, if there was a monomial that would contain a
variable xij for all j, then the polynomial would have degree d.

Thanks to this property, in order to verify that both polynomials are identical,
it is enough to verify this identity for each j by assuming that xij = 0, for all i.
Moreover, we do not lose any generality by assuming that j = d.

So, let us set xid = 0 for all i. Then G(I)
d (x) is left with monomials xf such that

d is a leaf of f . Let us denote by G(I)

d (x) this polynomial. If d ∈ I, then the terms of
G

(I)
d (x) remaining in G(I)

d (x) correspond to forests on E in which d is both a root and
leaf, which is the same as G(J)

d−1(x), where J = I \ {d}. If d /∈ I, then each monomial
in G(I)

d (x) corresponds to a forest on E in which d is a leaf, but not a root. Any such
forest is actually constructed from a forest on [d − 1], with roots set J to which d
is attached by an arc directed to any of its vertices. This means that in this case,
G

(I)

d (x) is obtained by multiplying G(J)
d−1(x) by the factor xd1 + · · · + xd,d−1. Each

term xdj of this sum corresponds to the edge (d, j) which attached to the forests in
G

(J)
d−1(x). Then we obtained the following expression for G(I)

d (x), with J = I \ {d},

G
(I)

d (x) =

{
G

(J)
d−1(x), if d ∈ I,

(xd1 + · · ·+ xd,d−1)G
(J)
d−1(x), if d /∈ I.

(3.14)

On the other hand, setting xid = 0 for all i in H(I)
d (x) gives a matrix which can be

written in a block form as

Hd(x) =

(
Hd−1(x) 0

−xd1 − · · · − xd,d−1 xd1 + · · ·+ xd,d−1

)
.

If d ∈ I, then the last row and column will be deleted so that detH(I)

d (x) =

detH(J)
d−1(x). If d /∈ I, then by expanding the determinant of Hd(x) along the last

column, we obtain xd1 + · · ·+ xd,d−1 multiplied by detH(J)

d−1(x), so that

detH(I)

d (x) =

{
detH(J)

d−1(x), if d ∈ I,
(xd1 + · · ·+ xd,d−1)detH

(J)

d−1(x), if d /∈ I.
(3.15)

From the induction assumption we have G(J)

d−1(x) = detH(J)

d−1(x) and the result follows
by comparing (3.14) and (3.15).
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Examples: 1. For d = 2 and I = {1} then there is only one forest on E which is
given by the edge (2, 1). Hence G({1})

2 (x) = x21. On the other hand,

Q2(x) =

(
x12 −x12
−x21 x21

)
,

so that det (Q
({1})
2 (x)) = x21.

2. Let d = 3 and I = {1}, then the three forests on [3] are given below:

2

3

1

3

2

1 1

32

Figure 7: The three forests on [3] with roots set {1}

The corresponding generating function is

G
({1})
3 (x) = x32x21 + x23x31 + x21x31 .

On the other hand, delating the first row and column in Q3(x), we obtain the deter-
minant,

det
(

(x21 + x23) −x23
−x32 (x31 + x32)

)
= (x21 + x23)(x31 + x32)− x23x32 ,

which is equal to G({1})
3 (x).

Let X = (Xt)t≥0 be an E-valued continuous time Markov chain with Q-matrix Q.
We will denote by Q(i) the (d− 1)× (d−1) matrix which is obtained by deleting row
and column i in Q. Recall from Subsection 3.3 that Ti is the set of spanning trees of
G which are rooted at i and that w(T ) denotes the weight of T ∈ Ti. In particular,
we can express the invariant distribution of a continuous time Markov chain with
sate space E and Q-matrix Q in a more explicit way than in Theorem 3.2.

Corollary 1. Let X be an irreducible continuous time Markov chain with state space
E and Q-matrix Q. Then

det(−Q(i)) =
∑
T∈Ti

w(T ) , i ∈ E ,

and the unique invariant distribution λ of X is given by,

λi = det(−Q(i))/Σ ,

where Σ =
∑d

i=1 det(−Q(i)).
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Proof. For any x, G({i})
d (x) represents the total weight of spanning trees rooted at

i in the complete graph endowed with the adjacency matrix (xij) (where xii = 0,
for all i). Then taking xij = qij, we obtain the graph of X and we conclude from
Theorems 3.2 and 3.5.

4 Enumeration of multitype forests.
We will now consider multitype trees and forests whose set of types is [d]. From now
on, when talking about trees or forests, we will always mean rooted multitype plane
trees or rooted multitype plane forests on the set [d]. Recall that a plane forest (or
an ordered forest) is a forest which is embedded in the plan. It is equivalent to say
that the vertices of the forest are ordered. Recall that in a multitype forest, children
of each vertex are placed so that children of type 1 are on the left, then children of
type 2 and so on, see Figure 8. For such a forest f , we call the Laplacian matrix of
f , the matrix K(f) = (kij(f))i,j∈[d] (kij = kij(f) when no confusion is possible) such
that for i, j ∈ [d], i 6= j, kij is the number of vertices of type i whose parent has type
j, and for all i ∈ [d],

−kii = ri +
d∑
j 6=i

kij, (4.16)

where ri is the number of roots of type i. If n = (n1, . . . , nd) denotes the vector such
that ni is the total number of vertices of type i in f , then the coupe (K, n) is called
the total progeny of the forest.

Definition 2. A simple forest is a forest such that for each i, at most one vertex of
type i has children. If for some type i, no vertex has children, then a special vertex
is marked. Moreover a simple forest contains at least one vertex of each type.

Note that an elementary forest is a simple forest whose Laplacian matrix has at most
one entry equal to 1 on each line, the other values being less or equal than 0.

Lemma 1. Let ri and kij, i, j ∈ [d], i 6= j be nonnegative integers satisfying (4.16)
and assume that r1 + · · · + rd > 0. Then the number of simple forests with total
progeny (K, n) is det(−kij)i,j∈[d].

Proof. To each simple forest, we can associate an elementary forest in an obvious
way: we start from the roots, then their children are those who themselves have
children or those who are marked, and so on. An example of a simple forest and its
associated elementary forest is presented in Figure 7.
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Figure 8: A simple forest and its associated elementary forest.

Let us code elementary forests by vectors (i, ji)i∈[d], where ji is the parent of i
and ji = d + 1 if i is a root. Then, inverting the above procedure, we see that to
each elementary forest (i, ji)i∈[d], we can associate exactly

∏
i∈[d] kiji simple forests,

where ki(d+1) = ri. Indeed, for each i, there are kiji possibilities to choose the vertex
of type i which has got children or who is marked. Hence,

∏
i∈[d] kiji is the number

of simple forests to which we can associate the elementary forest (i, ji)i∈[d]. Then in
order to obtain the total number of simple forests with Laplacian matrix (kij)i,j∈[d],
it remains to perform the sum of these monomials over all the elementary forests on
[d], that is ∑

(i,ji)i∈[d]

∏
i∈[d]

kiji .

But we see that this sum is the same as the generating function of elementary trees
on [d+ 1] and rooted at d+ 1,

G
({d+1})
d+1 (x) =

∑
t:roots(t)=d+1

xt .

taken at xij = kij, this is exactly det(−kij) from Theorem 3.5.

We emphasize that from this lemma, the number simple forests with total progeny
(K, n) only depends on the Laplacian matrix K. Indeed, it is easy to see that vertices
of type i whose parent has type i, that is ni + kii, are not involved in the counting
presented above.

Let us now extend the notion of spanning tree of a graph to this of a spanning
forest of a multigraph. Let G = ([d], A) be a multigraph and let I ⊆ [d], then
a spanning forest of a multigraph G = ([d], A) is a subgraph of G which is an
elementary forest rooted at I. To a multigraph G = (E,A), we associate the matrix
L(G) = (l(G)ij)i,j∈[d], where for i 6= j, lij = lij(G) is the number of edges directed
from i to j and lii = −

∑
j 6=i lij. The matrix L will be called the Laplacian matrix of

G, although definitions may differ from a text to another.

Corollary 2. Let G = ([d], A) be a multigraph with Laplacian matrix L and fix
I ⊆ E, a non empty subset of E. Let L(I) be the matrix obtained by delating rows
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and colomns which indices belong to I in L. Then the number of spanning forests
rooted at I of G obtained by labeling its edges is det (−L(I)).

Proof. Let us first prove the result for I = {1}. Let us construct the following set
of simple trees from the multigraph G. Fix a spanning tree t of G. Then unfold the
multigraph G in order to obtain a simple multitype tree mt on [d] as follows: we
start from the elementary tree on [d] defined by our spanning tree. Then on each
vertex of t we graft vertices corresponding to its incident edges in G by increasing
order of the types of the children and by respecting the order of the edges in G. If
some type has no children in mt, then we mark the vertex which belongs to t. This
construction is illustrated in Figure 8.

1
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2
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1 2
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1 2
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21

4

1
2

4 4

21

Figure 9: A multigraph and one of its unfolded simple trees.

It is clear that two different spanning trees rooted at 1 in G provide two different
simple trees rooted at 1. Conversely, each simple tree, once folded, produces G
with some distinguished spanning tree. Moreover, the simple trees issued from this
construction have Laplacian matrix

kij = lij if (i, j) 6= (1, 1) and k11 = l11 − 1.

Then we have defined a bijection between spanning trees in G rooted at 1 and simple
multitype trees rooted at 1 with Laplacian matrix (kij). From Lemma 1, the number
of these simple trees is

det(−kij) ,
which is equal to det (−L({1})). Indeed, the first column of K can be decomposed as
k·1 = l·1 +t (−1, 0, . . . , 0) and the determinant of L is 0.

The general case of a subset I ⊂ E is done from the same arguments.

The Laplacian matrix of the example of the proof is

L =


−1 0 1 0
3 −4 1 0
2 1 −3 0
0 2 0 −2

 ,
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and the number of spanning trees of G = ([d], A) rooted at {1} is det(−L({1}) = 22.

Now we shall enumerate labeled forests according to the degree of their vertices.
For the remainder of this section, ri, ni and kij, i, j ∈ [d] will be integers satisfying
the following conditions:

ri ≥ 0, r1 + · · ·+ rd ≥ 1, kij ≥ 0, for i 6= j, −kii = ri +
∑

j 6=i kij and ni ≥ −kii ≥ 1.

Definition 3. To each forest f with ni vertices of type i and to each vertex of type
i in f , we associate an integer in [ni], which is called its label. Then f is called a
labeled plane forest. Let L be the set of labeled plane forests with ni vertices of type
i, ri roots of type i, in which kij vertices of type i have a parent of type j.

Then we define the set of forests with given indegree.

Definition 4. Let c = (ci,j,k)i,j∈[d],k∈[nj ] be a tuple of non-negative integers such that
k′ij =

∑nj

k=1 ci,j,k, where k
′
ij = kij if i 6= j and k′ii = ni + kii. We will denote by L (c)

the subset of L of labeled plane forests with indegree c, that is the set of labeled
plane forests in which the vertex of type j with label k has ci,j,k children of type i.
Then c is called the indegree tuple of the forest f ∈ L (c).

We first show that the cardinality of the set L (c) does not depend on the indegree
c. Recall that in this definition, k′ii represents the number of vertices of type i whose
parent has type i, so that for all i, j ∈ [d], the integer k′ij is equal to the number of
vertices of type i whose parent has type j.

Lemma 2. For any c and c′ such that
∑nj

k=1 ci,j,k =
∑nj

k=1 c
′
i,j,k, for all i, j ∈ [d],

|L (c)| = |L (c′)|.

In other words, the number of labeled plane multitype forests with given indegrees
tuples only depends on the adjacency matrix.

Proof. Assume first that for fixed i0, j0 and 1 ≤ k1, k2 ≤ nj0 , 0 ≤ c′i0,j0,k1 = ci0,j0,k1−1
and c′i0,j0,k2 = ci0,j0,k2+1 and c′i,j,k = ci,j,k, whenever (i, j, k) 6= (i0, j0, k1) and (i, j, k) 6=
(i0, j0, k2). Then we can build a labeled plane forest f ′ with indegree c′ from a labeled
plane forest f with indegree c by removing the subtree rooted at the first child of
type i0 of k1-th vertex of type j0 in f and by graphing it on the k2-th vertex of type
j0 in f so that the root of type i0 of this new subtree is the first child of type i0 of
the k2-th vertex of type j0. This transformation is clearly a bijection between L (c)
and L (c′).

Then for any indegree tuples c and c′ such that
∑nj

k=1 ci,j,k =
∑nj

k=1 c
′
i,j,k and any

labeled plane forests f and f ′ with respective indegrees c and c′, we can transform f
into f ′ through elementary operations as described above. This induces a bijection
between L (c) and L (c′) and the result is proved.
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Theorem 4.1. The number of labeled plane multitype forests with given indegrees
tuples is

|L (c)| = det(−kij)
d∏
j=1

(nj − 1)!

Proof. Assume first that c = (ci,j,k)i,j∈[d],k∈[nj ] is such that for each j ∈ [d] there is
at most one k ∈ [nj], such that ci,j,k > 0 for some i ∈ [d]. Then the corresponding
unlabeled forest is a simple forest. We have proved in Lemma 1 that the number
of simple forests with Laplacian matrix K = (kij) is det(−kij)i,j∈[d]. Given a simple
forest there are exactly (ni−1)! ways to give labels to the ni−1 vertices of type i who
have no children or who are not marked. Hence there are det(−kij)

∏d
j=1(nj − 1)!

labeled simple forests, that is |L (c)| = det(−kij)
∏d

j=1(nj − 1)! for this particular
indegree tuple. Then the result follows from Lemma 2.

Let us finally mention the following consequence of our results which can be found
in Proposition 11 of [4]. A (multitype) Cayley trees is just a connected graph with
no cycles. (It is not embedded in the plan.) A (multitype) Cayley forest is a finite
set of Cayley trees.

Corollary 3. The number of labeled multitype Cayley forests with given indegrees
tuples is

det(−kij)
∏d

j=1(nj − 1)!∏
i∈[d] ri!

∏
i,j∈[d],k∈[nj ]

ci,j,k!
.

Proof. When enumerating labeled plane forests with indegree c, we count f , f ′ ∈ L (c)
such that f ′ can be obtained by permuting in f the ci,j,k subtrees whose roots are the
ci,j,k children of type i of the kth vertex of type j, for some i, j ∈ [d] and k ∈ [nj] or
by exchanging the trees whose roots have the same type in the whole forest. But in
this case, f and f ′ are the same Cayley forest. Therefore, we still have to divide the
number

∏d
j=1(nj − 1)! det(−kij) by

∏
i∈[d] ri!

∏
i,j∈[d],k∈[nj ]

ci,j,k!, that is

|L (c)| =
∏d

j=1(nj − 1)!∏
i∈[d] ri!

∏
i,j∈[d],k∈[nj ]

ci,j,k!
det(−kij) .

5 Branching trees and forests.

5.1 Definitions

All the random variables we will consider here will be defined on a reference prob-
ability space (Ω,F , P ). Let ν := (ν1, . . . , νd), where νi is some distribution on Zd+.
We consider a population of individuals which reproduce independently of each other
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at each generation. Individuals of type i give birth to nj children of type j ∈ [d]
with probability νi(n1, . . . , nd). Then ν is called the progeny distribution of the
population.

For i, j ∈ [d], we denote by mij the mean number of children of type j, given by
an individual of type i, i.e.

mij =
∑

(n1,...,nd)∈Zd
+

njνi(n1, . . . , nd) .

We say that ν is non singular if there is i ∈ [d] such that νi(n : n1 + · · ·+nd = 1) < 1.
The matrixM = (mij) is said to be irreducible if for all i, j, mij <∞ and there exists
n ≥ 1 such that m(n)

ij > 0, where m(n)
ij is the ij entry of the matrix Mn. If moreover

the power n does not depend on (i, j), then M is said to be primitive. In the latter
case, according to Perron-Frobenius theory, the spectral radius ρ of M is the unique
eigenvalue which is positive, simple and with maximal modulus. If ρ ≤ 1, then the
population will become extinct almost surely, whereas if ρ > 1, then with positive
probability, the population will never become extinct. We say that ν is subcritical
if ρ < 1, critical if ρ = 1 and supercritical if ρ > 1. We sometimes say that µ is
irreducible, primitive, (sub)critical or supercritical, when this is the case for M .

In what follows, we will always assume that the progeny distribution ν is non
degenerate, primitive and critical or subcritical. Then under this assumption we can
define almost surely finite multitype branching trees, as follows: we start from some
vertex of type i ∈ [d] at generation 0. Then the tree grows from one generation to
the other as follows. For n ≥ 1, conditionally on the joint progeny at generation n,
each vertex of this generation gives birth to children at generation n+1 according to
its own progeny distribution, independently of the other vertices and then die. This
stochastic evolution of the population is called the branching property. It produces
a multitype tree which is almost surely finite according to what is recalled above.
Then we embed this tree in the plan so that it is a multitype plane tree, as defined
in the previous section. A multitype branching forest with progeny distribution ν
is a sequence of independent multitype branching trees with progeny distribution
ν, who are ordered between themself. The forest is said to be finite or an infinite
according to whether it contains a finite or infinite number of trees. We will first pay
a special attention to finite forests. A finite multitype branching forest is a random
variable which will usually be denoted by Fr, where r = (r1, . . . , rd) ∈ Zd+ is such
that r1 + . . . , rd > 0 and ri is the number of trees in Fr whose root is of type i. We
will say that the forest in rooted at r. (Recall that in the ordering of the plane forest
Fr, we placed trees whose root is of type 1 first, then trees whose root is of type 2,
and so on.) Let us denote by Fr the set of multitype forests which are rooted at r.
Then the law of Fr is given by

P (Fr = f) =
∏
u∈f

νc(u)(p(u)) , f ∈ Fr, (5.17)
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where c(u) is the type of the vertex u and p(u) = (p1(u), . . . , pd(u)) is its progeny,
that is pi(u) is the number of children of type i of the vertex u.

Let us note that it is more common to call Fr a multitype Bienaymé-Galton-
Watson forest rather than a multitype branching forest which is used in a more
general context. We choose this terminology as it is simpler.

5.2 Total progeny of multitype branching forests

Recall that the total progeny p(f) of a multitype forest f , is the couple (K, n), where
K = (kij)i,j∈[d] is the Laplacian matrix of f and n = (n1, . . . , nd) is the vector of Zd+
such that ni is the number of vertices of type i in f . We denote by p(Fr) the total
progeny of the multitype branching forest Fr.

The next theorem gives and expression of the total progeny of any multitype
branching forest in terms of its progeny distribution.

Theorem 5.1. Assume that the progeny distribution ν is non-degenarate, primitive
and critical or subcritical. Then for all r ∈ Zd+, such that r1 + · · · + rd > 0, for all
Laplacian matrix K and for all n ∈ Zd+, such that

ri ≥ 0, r1 + · · ·+ rd ≥ 1, kij ≥ 0, for i 6= j, −kii = ri +
∑

j 6=i kij and ni ≥ −kii,

P (p(Fr) = (K, n)) =
det(−K)

n̄1n̄2 . . . n̄d

d∏
j=1

ν
∗nj

j (k′1j, . . . , k
′
dj) , (5.18)

where n̄i = ni ∨ 1, k′ij = kij if i 6= j and k′ii = ni + kii and K is the matrix K to
which we removed the line i and the column i, for all i such that ni = 0. Moreover,
we set ν∗0j = δ0.

Proof. Let us first assume that ni ≥ 1, for all i ∈ [d]. Recall Definitions 3 and 4 of
L and L (c). To each f ∈ Fr such that p(f) = (K, n) correspond

∏
i∈[d] ni! forests

in L , so that we can write

P (p(Fr) = (K, n)) =
∑

f∈Fr, p(f)=(K,n)

P (Fr = f)

=
1∏

i∈[d] ni!

∑
f∈L , p(f)=(K,n)

P (Fr = f) .

Then let us decompose L as the union of L (c).

P (p(Fr) = (K, n)) =
1∏

i∈[d] ni!

∑
c:
∑nj

k=1 ci,j,k=k
′
ij

∑
f∈L (c)

P (Fr = f).
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But from (5.17), for fixed c such that
∑nj

k=1 ci,j,k = k′ij, the value of P (Fr = f) is the
same for all f ∈ L (c) and is

∏
j∈[d]

∏nj

k=1 νj(c1,j,k, . . . , cd,j,k), we obtain from Theorem
4.1,

P (p(Fr) = (K, n))

=
det(−kij)

∏d
j=1(nj − 1)!∏

i∈[d] ni!

∑
c:
∑nj

k=1 ci,j,k=k
′
ij

∏
j∈[d]

nj∏
k=1

νj(c1,j,k, . . . , cd,j,k)

=
det(−K)

n1n2 . . . nd

d∏
j=1

ν
∗nj

j (k′1j, . . . , k
′
dj).

Finally assume that nd = 0 and ni ≥ 1, for i 6= d. Then we obtain (5.18) by using
the same arguments, but replacing Fr, L and L (c) by the same sets defined on
[d− 1].

5.3 Coding trees and forests

A way to order a given tree is to use a search algorithm. The most commonly
used search algorithms come from computer science. We will only use the depth
first search algorithm (dfsa) and the breadth first search algorithm (bfsa). The dfsa
consists in ordering the vertices of a tree by starting from the root and by visiting
the vertices in the lexicographical order. In the bfsa, we order the vertices by visiting
each generation from the left to the right, the first generation being this of the root.
These definitions should be clear from Figure 10.
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4
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32
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Figure 10: The same tree ordered in the depth first search order (left)
and in the breadth first search order (right).

A plane multitype forest f = {t1, t2, . . . } will be ordered by ordering each tree, one
after the other, see Figure 11. Note that this ordering of f does not depend on the
types of the vertices. Such a forest will be called a forest ordered according to the
bfso (breadth first search order).

For i ∈ [d], we will denote by ei the i-th unit vector of Zd. Then for k =
(k1, . . . , kd) and m = (m1, . . . ,md) elements of Zd+, we write k ≤ m if ki ≤ mi, for all
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i ∈ [d] and we write k < m if ki ≤ mi, for all i ∈ [d] and kj < mj, for some j ∈ [d].

Let us now define coding paths for multitype forests. Let u be some vertex of
a forest f . Then recall that we denoted by p(u) = (p1(u), . . . , pd(u)) the progeny of
the vertex u, where pi(u) is the number of children of type i of u. Let u1, u2, . . .
be the ordered sequence of vertices of f and let c(k) be the type of uk. Then define
the matrix Mk = (m

(k)
ij )i,j∈[d], whose all the column are equal to 0 except the c(k)-th

column which is given by

m
(k)
i,c(k) = pi(uk), for i 6= c(k) and m

(k)
c(k),c(k) = pc(k)(uk)− 1 .

We now construct a multi-indexed sequence of matrices (Kh), h = (h1, . . . , hd) ∈ Zd+
of Md(Z) associated with the forest f . First we set K0 = 0 and we define the
matrices Kh, 0 ≤ h ≤ n by visiting vertices of f in their bfso. Suppose the matrix
Kh is constructed up to the visit of vertex uk−1. Then the next visited vertex is uk
and we set,

Kh+ec(k) = Kh +Mk ,

and so on. It is not difficult to check from this construction that if ni is the total
number of vertices in f , then the matrix Kn which is obtained once all vertices have
been explored corresponds to the Laplacian matrix of f . Moreover, the forest f can
be reconstructed from the sequence (Kh, 0 ≤ h ≤ n). The latter sequence will be
denoted K(f). Let us illustrate this construction on an example for d = 2:

1

21

2

1

Figure 11: A 2-type forest with 2 trees.

The coding multi-indexed sequence of matrices (Kh, 0 ≤ h ≤ n) corresponding to the
forest of Figure 11 is K(0,0) = 0 and then K(1,0), K(2,0), K(2,1), K(2,2) and K(3,2) are
given respectively by

(
0 0
1 0

)
;

(
−1 0
1 0

)
;

(
−1 0
1 −1

)
;

(
−1 1
1 −2

)
;

(
−2 1
1 −2

)
.

We can check that the terminal value of this sequence, that is corresponds to the
Laplacian matrix of the forest. More specifically, the progeny of this forest is

p(f) =

((
−2 1
1 −2

)
, (3, 2)

)
.
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For any set E of real numbers, we denote by Md(E) the set of squared matrices of
dimension d with E-valued entries. We will consider the following subsets of Md(Z),

M+ = {(xij)i,j∈[d] ∈ Md(Z) : mij ≥ 0, i, j ∈ [d], i 6= j},
M+,1 = {(xij)i,j∈[d] ∈ M+ : mii ≥ −1, i ∈ [d]}.

The subset M+ is call the set of essentially nonnegative matrices. It is very in-
volved in Markov chains and branching processes. Indeed, q-matrices are essentially
nonnegative matrices as well as Laplacian matrices of multitype branching forests.
For a matrix X ∈ Md(Z) we will use the notation X := X t(1, 1, . . . , 1), so that X
corresponds to the row vector:

X =

(
d∑
j=1

xij , i ∈ [d]

)
.

We will consider sequences with values in Md(Z) and indexed by Zd+ as follows:

Xk = (xi,jkj )i,j∈[d], k = (k1, . . . , kd) ∈ Zd+,

that is all entries of column j of Xk are indexed by kj.

Definition 5. A sequence (Xk, k ∈ Zd+) of matrices in M+ is said to be downward
skip free if

(i) X0 = 0,

(ii) for all i ∈ [d] and k ∈ Zd+, Xk+ei −Xk ∈ M+,1.

Note that the sequence K(f) defined above relatively to a forest f is a downward
skip free sequence of matrices.

The following result allows us to define the first passage time of a downward skip
free sequence of matrices.

Lemma 3. Let (Xk, k ∈ Zd+) be a downward skip free sequence of matrices and
r = (r1, . . . , rd) ∈ Zd+. If there exists k ∈ Zd+ such that Xk = −r, then there is some
particular index Tr(X) ∈ Zd+ (denoted by Tr when no confusion is possible) such that

XTr = −r and Tr ≤ q whenever Xq = −r. (5.19)

The index Tr will be called the first passage time of the multi-indexed sequence
(Xk, k ∈ Zd+) at level −r and will be denoted by

Tr = inf{k : Xk = −r}.
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Let n, r ∈ Zd+ and the matrix K such that

ri ≥ 0, r1 + · · ·+ rd ≥ 1, kij ≥ 0, for i 6= j, −kii = ri +
∑

j 6=i kij and ni ≥ −kii ≥ 1

and define the following set of finite sequences of downward skip free sequences of
matrices,

Σn,K = {(Xk, 0 ≤ k ≤ n) downward skip free : Tr = n and XTr = K}.

Denote by FK,n the subset of Fr of forests with progeny (K, n).

Proposition 1. The mapping

ψ : FK,n → Σn,K

f 7→ K(f)

is a bijection.

This result is intuitively clear and we will not prove it here. It actually extends a well
known result for single type forest, which is called the Lukasiewicz-Harris coding of
plane forests, see Proposition 1.1 in [16].

5.4 Application to multitype branching forests

Recall from the beginning of this section the definition of a branching forest Fr, with
progeny distribution ν = (ν1, . . . , νd). We assume again that ν is non degenerate,
primitive and critical or subcritical. Recall also the definition of the downward skip
free sequence of matrices K(Fr) which, from our definition, is a multi-indexed down-
ward skip free sequence of random matrices.

In this section, (Xk = (X i,j
kj

)i,j∈[d], k ∈ Zd+) will be a downward skip free M+-
valued random walk, that is (Xk, k ∈ Zd+) is almost surely a downward skip free
sequence of matrices, as defined in the previous subsection and for all k,m ∈ Zd+ such
that k ≤ m, Xm − Xk is independent of the family of random matrices (Xs, s ≤ k).
Note that this special construction implies that the processes defined by the column
vectors (X i,j

k , i ∈ [d])k≥0, for j ∈ [d] are independent Zd-valued random walks. Let
us denote by

Tr = (T (1)
r , . . . , T (d)

r ) = inf{k : Xk = −r} ,
the first passage time of (Xk, k ∈ Zd+) at level −r, as defined in Lemma 3 if it exists
and set T (i)

r =∞, for all i ∈ [d], if it does not exist.

Proposition 2. Let r ∈ Zd+, such that r1 + · · · + rd > 1, and Fr be a branching
forest with progeny distribution ν. Then there exists a downward skip free M+-valued
random walk (Xk, k ∈ Zd+) with step distribution

P (X1,j
1 = a1, . . . , X

d,j
1 = ad) = νj(a1, . . . , aj−1, aj + 1, aj+1, . . . , ad), i ∈ [d], (5.20)
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for ai ∈ Z+, if i 6= j and aj ≥ −1, such that

K(Fr) = (Xk, 0 ≤ k ≤ Tr).

Proof. Although this result is intuitively clear from the branching property and more
particularly, from the definition of the law of Fc:

P (Fc = f) =
∏
u∈f

νc(u)(p(u)) , f ∈ Fc,

and the coding presented in Proposition 1, its proof requires more developed argu-
ments. We will not do it here.

Proposition 1 means that any multitype branching forest is encoded by a downward
skip free M+-valued random walk whose step distribution is given by the progeny dis-
tribution. Actually, we presented this result only in the (sub)critical case in the sole
concern of simplify the presentation but a version of this result can be obtained for
general multitype branching forests. This proposition shows that in the (sub)critical
case, P (T

(i)
r < ∞) = 1, for all i ∈ [d], since (sub)critical branching forests issued

from r are almost surely finite.

Now we are interested in the law of the first passage time Tr of a downward skip
free M+-valued random walk (Xk, k ∈ Zd+) with step distribution given by (5.20).
When d = 1, it is known that the process (Tr, r ≥ 0) is a renewal process, that is an
increasing random walk. It laws is characterized by its generating function which is
given from the generation function of the downward skip free random walk X. Let
us extend this result for d ≥ 1.

Let us define the generating function Φi : [0, 1]d → [0, 1] of Tei by

E(sTei ) = Φi(s), s ∈ [0, 1]d.

Recall that P (T
(i)
r < ∞) = 1, for all i ∈ [d] and r ∈ Zd+ and observe that from the

independence and stationarity of the increments of (Xk, k ∈ Zd+), for all r, r′ ∈ Zd+,

Tr+r′
(d)
= Tr + T̃r′ .

where T̃r′ is an independent copy of Tr′ . We derive from this identity that the
generating function of Tr satisfies

E(sTr) = Φ(s)r, s ∈ [0, 1]d,

where we set Φ(s) = (Φ1(s), . . . ,Φd(s)) and Φ(s)r = Φ1(s)
r1 . . .Φd(s)

rd . Let us define
the generating function of r +Xr by

ϕr(s) = E(sr+Xr).

27



Proposition 3. The generating function of Tr is related to this of r + Xr through
the following relationship.

Φ(s)r = srϕr(Φ(s)). (5.21)

Proof. Since (Xk, k ∈ Zd+) is downward skip free, Tr ≥ r and Xr ≥ −r, so that we
can write

Tr = r + T
(r)

r+Xr
,

where
X

(r)
k = Xr+k − Xr, k ∈ Zd+ and T (r)

n = inf{k : X
(r)

k = −n} .

Then from the independence between (X
(r)
k , k ∈ Zd+) and (Xk, k ≤ r), we derive that

Φ(s)r = E(s
r+T

(r)

r+Xr )

= sr
∑
k≥0

E(sTk)P (r +Xr = k)

= srϕr(Φ(s)),

which proves our result.

The solution of equation (5.21) can be made explicit in terms of ν from Lagrange-
Good inversion formula. We derive here a more complete result from the coding of
multitype forests. When d = 1 a an explicit way to characterize the law of Tr is
given by the so-called ballot theorem (or Kemperman’s identity). Let us extend this
identity for d ≥ 1. The next theorem is called the multivariate ballot theorem. It
provides the joint law of the first passage time Tr and the value of the matrix XTr in
terms of the law of the step distribution of the random walk.

Theorem 5.2. Let n, r ∈ Zd+ and the matrix K such that

ri ≥ 0, r1 + · · ·+ rd ≥ 1, kij ≥ 0, for i 6= j, −kii = ri +
∑

j 6=i kij and ni ≥ −kii ≥ 1

then the joint law of (Tr, XTr) is given by

P (Tr = n, XTr = K) =
det(−K)

n1n2 . . . nd
P (Xn = K).

Proof. It is a direct application of Theorem 5.1 and Proposition 2.

Let us emphasize the fact that Theorem 5.2 is true for more general sequences of
random matrices. Indeed, we can easily extend this result to cyclically interchange-
able downward skip free sequences of random matrices. Let (Xk, k ∈ Zd+) be such a
sequence. Fix m, n ∈ Zd+ such that m ≤ n and define the sequence (X

(m)
k , 0 ≤ k ≤ n)

by

X
(m),i,j
kj

=

{
Xi,j
mj+kj

− Xi,j
mj

if kj ≤ nj −mj

Xi,j
kj−(nj−mj)

+ Xi,j
nj
− Xi,j

mj
if nj −mj ≤ kj ≤ nj.

(5.22)
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A downward skip free sequence of random matrices (Xk, k ∈ Zd+) is said to be
cyclically interchangeable if for all m, n ∈ Zd+ such that m ≤ n,

(X
(m)
k , 0 ≤ k ≤ n)

(d)
= (Xk, 0 ≤ k ≤ n).

We will now apply this coding to the expression of the law of the total number
of vertices with a given degree. In order to simplify the presentation we will restrict
ourself to the number of leaves in the multitype forest, that is the number of vertices
with no children. Let Fr is be a multitype branching forest. Recall that p(Fr) denotes
the total progeny of Fr. Then let l(Fr) = (l1(Fr), . . . , ld(Fr)) be its number of leaves,
that is li(Fr) is the total number of vertices of type i with no children in Fr.

Theorem 5.3. Assume that the progeny distribution ν is non-degenarate, primitive
and critical or subcritical. Then for all r ∈ Zd+, such that r1 + · · · + rd > 0, for all
Laplacian matrix K and for all n ∈ Zd+, such that ri ≥ 0, r1 + · · · + rd ≥ 1 and
kij ≥ 0, for i 6= j, −kii = ri +

∑
j 6=i kij, ni ≥ −kii, ni ≥ li,

P (p(Fr) = (K, n), l(Fr) = l) =

det(−K)

n̄1n̄2 . . . n̄d

d∏
j=1

(
nj
lj

)
νj(0)lj(1− νj(0))nj−lj ν̄

∗(nj−lj)
j (h′1j, . . . , h

′
dj) , (5.23)

where ν̄j(0) = 0 and ν̄j(k) = νj(k)/(1− νj(0)), for k ∈ Zd+ \ {0} and h′ij = kij + ljej
if i 6= j and h′ii = ni+kii. Moreover, n̄i = ni∨1, and K is the matrix K to which we
removed the line i and the column i, for all i such that ni = 0 and we set ν∗0j = δ0.

Proof. From Proposition 2, the number of leaves l(Fr) of type j corresponds to the
number of jumps of size −ej in the sequence ((Xi,j

kj
, i ∈ [d]), 0 ≤ kj ≤ T

(j)
r ). Denote

by ∆j this number and set ∆ = (∆1, . . . ,∆d). Then according to Proposition 2,

P (p(Fr) = (K, n), l(Fr) = l) = P (Tr = n, XTr = K,∆ = l).

Note that under the conditional probability P ( · |∆ = l), the coding random walk
(Xk, k ∈ Zd+) is a downward skip free sequence of random matrices with cyclically
interchangeable increments. Indeed this number is invariant under the cyclic per-
mutations defined in (5.22). Therefore, from Theorem 5.2 and the remark after this
theorem, we can write

P (Tr = n, XTr = K |∆ = l) =
det(−K)

n1n2 . . . nd
P (Xn = K |∆ = l) ,

so that
P (Tr = n, XTr = K, ∆ = l) =

det(−K)

n1n2 . . . nd
P (Xn = K, ∆ = l) .
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Then let us develop this last term.

P (Xn = K, ∆ = l)

=
∏
j∈[d]

P (X·,jnj
= kij, ∆j = lj)

=
∏
j∈[d]

∑
1≤m1<···<mlj

≤nj

P (X ·,jh −X
·,j
h−1 = −ej, h ∈ {m1, . . . ,mlj})

×P (
∑

h/∈{m1,...,mlj
}

X ·,jh −X
·,j
h−1 = k·j + ljej, X

·,j
h −X

·,j
h−1 6= −ej, h /∈ {m1, . . . ,mlj}).

Then this last probability can be written as

P (
∑

h/∈{m1,...,mlj
}

X ·,jh −X
·,j
h−1 = k·j + ljej, X

·,j
h −X

·,j
h−1 6= −ej, h /∈ {m1, . . . ,mlj})

= P (X
′·,j
nj−lj = k·j + ejlj)P (X ·,jh −X

·,j
h−1 6= −ej, h /∈ {m1, . . . ,mlj}),

where (X
′·,j
k )k≥0 has law ν̄j defined in the statement. Then it remains to observe that{

P (X ·,jh −X
·,j
h−1 = −ej, h ∈ {m1, . . . ,mlj}) = νj(0)lj

P (X ·,jh −X
·,j
h−1 6= −ej, h /∈ {m1, . . . ,mlj}) = (1− νj(0))nj−lj .
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