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Abstract We propose a path transformation which applied to a cyclically
exchangeable increment process conditions its minimum to belong to a given
interval.

This path transformation is then applied to processes with start and end at 0. It is
seen that, under simple conditions, the weak limit as "!0 of the process conditioned
on remaining above !" exists and has the law of the Vervaat transformation of the
process.

We examine the consequences of this path transformation on processes with
exchangeable increments, Lévy bridges, and the Brownian bridge.
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102 L. Chaumont and G. Uribe Bravo

1 Introduction

In this paper, we use symmetries of the law of a stochastic process, which appear
through its invariance under a group of transformations, to construct a version
of the process conditioned on certain events. The objects of interest will be
processes with cyclically exchangeable increments. These processes, denoted by
X D .Xt; t 2 Œ0; 1!/, are defined by having a law which is invariant under the cyclic
shift "tX that interchanges the pre and post-t part of the process X, preserving the
same values at times 0 and 1. The precise definition of the shift "t is found in
Eq. (2.1). The kind of transformations we will be concerned with are of the type
"#X where # is a random variable. Informally, we will chose # to be uniform on
the set of indices t such that the minimum of "tX belongs to a given interval I.
Our conclusion, stated in Theorem 2.2, will be that "#X has the same law as X
conditioned on its minimum belonging to the interval I, and that # is uniform on
Œ0; 1! and independent of "#X.

Our main motivation in performing such a construction is to show that classical
results regarding the normalized Brownian excursion are in fact a direct conse-
quence of the cyclical exchangeability property of the increments of the Brownian
bridge. Indeed, Durrett, Iglehart and Miller proved in [11] that the law of the
normalized Brownian excursion can be obtained as the weak limit of the standard
Brownian bridge conditioned to stay above " > 0, as " ! 0. We will obtain
this result by applying the above random shift when the interval I shrinks to a
point. A pathwise relationship was then found by Vervaat in [28] who proved in
his famous transformation that the path of the normalized Brownian excursion can
be constructed by inverting the pre-minimum part and the post-minimum part of
the standard Brownian bridge. Then in [4], Biane noticed that the latter process is
independent of the position of the minimum of the initial Brownian bridge, and that
this minimum time is uniformly distributed. He derived from this result and Vervaat
transformation a path construction of the Brownian bridge from the normalized
Brownian excursion. We will refer to both transformations as the Vervaat-Biane
transformation. The above mentioned results can be stated as follows.

Theorem 1.1 ([28] and [4]) Let X be the standard Brownian bridge. Then, the
law of X conditioned to remain above !" converges weakly as " ! 0 toward the
law of the normalized Brownian excursion. If $ is the unique instant at which X
attains its minimum, then the process "$.X/t has the law of a normalized Brownian
excursion. Conversely, if Y is a normalized Brownian excursion and if U is a
uniformly distributed random variable, independent of Y then the process "U.Y/t
has the law of a standard Brownian bridge.

The aim of this paper is to show that Vervaat-Biane transformation is actually
a direct consequence of the cyclical exchangeability property of the increments of
the Brownian bridge. Therefore the same type of transformation can be obtained
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between any process with cyclically exchangeable increments and its version
conditioned to stay positive, provided its minimum is attained at a unique instant.
This will be done in Sect. 3 where we will also study the example of processes with
exchangeable increments. Then in Sect. 4, we prove some refinements of Vervaat-
Biane transformation for the Brownian bridge conditioned by its minimum value.
Section 2, is devoted to the main theorem of this paper which provides the essential
argument from which most of the other results will be derived.

Inverting Vervaat’s path transformation, first considered by Biane in [4], leads
naturally to relationships for the normalized Brownian excursion, sampled at an
independent uniform time, and the Brownian bridge. Developments around this are
found in [2, 22] and [24].

Other examples of Vervaat type transformations, almost always connected to
Lévy processes, are found in [5–7, 12, 18, 19] and [27].

2 Conditioning the Minimum of a Process with Cyclically
Exchangeable Increments

We now turn to our main theorem in the context of cyclically exchangeable
increment processes.

We use the canonical setup: let D stand for the Skorohod space of càdlàg
functions f W Œ0; 1! ! R on which the canonical process X D .Xt; t 2 Œ0; 1!/ is
defined. Recall that Xt W D ! R is given by

Xt. f / D f .t/ :

Then, D is equipped with the %- field %.Xt; t 2 Œ0; 1!/. Denote by ftg and btc the
fractional part and the lower integer part of t, respectively, and introduce the shift "u
by means of

"u f .t/ D f .ftC ug/ ! f .u/C f .btC uc/ : (2.1)

The transformation "u consists in inverting the paths ff .t/; 0 " t " ug and
ff .t/; u " t " 1g in such a way that the new path "u.f / has the same values as
f at times 0 and 1, i.e. "uf .0/ D f .0/ and "uf .1/ D f .1/. We call "u the shift at time
u of X over the interval [0,1]. Note that we will always use the transformation "u
with f .0/ D 0 (Fig. 1).

Definition 2.1 (CEI process) A càdlàg stochastic process has cyclically
exchangeable increments (CEI) if its law satisfies the following identities in law:

"uX
.d/D X for every u 2 Œ0; 1!.
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104 L. Chaumont and G. Uribe Bravo

Fig. 1 Repeated trajectory of a Brownian bridge. The first frame shows the original trajectory. The
second shows its shift at u D :14634. The third frame shows the shift at the location of the unique
minimum, illustrating the Vervaat transformation

The overall minimum X, which can be defined now as a functional on the
Skorohod space, is given by

X D inf
0!t!1

Xt:

Intuitively, to condition X on having a minimum on a given interval I # .!1; 0!,
we choose t uniformly on the set in which X ı "t 2 I by using the occupation time
process

AI
t D

Z t

0

1fXı"s2Ig ds:

Here is the main result. It provides a way to construct CEI processes conditioned
on their overall minimum.

Theorem 2.2 Let .X;P/ be any non trivial CEI process such that X0 D 0, X1 $
0 and P.X 2 I/ > 0. Let U be an independent random time which is uniformly
distributed over Œ0; 1! and define:

# D infft W AI
t D UAI

1g: (2.2)

Conditionally on AI
1 > 0, the process "#.X/ is independent of # and has the same

law as X conditionally on X 2 I. Moreover the time # is uniformly distributed over
Œ0; 1!.

Conversely, if Y has the law of X conditioned on X 2 I and U is uniform and
independent of Y then "U.Y/ has the same law as X conditioned on AI

1 > 0.
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Remark 2.3 When X1 D 0, the set
˚
AI
1 > 0

!
can be written in terms of the

amplitude H D X ! X (where X D supt2Œ0;1! Xt) as fH $ ! inf Ig.
Proof of Theorem 2.2 We first note that the law of Xı"U conditionally on Xı"U 2 I
is equal to the law of X conditionally on X 2 I. Indeed, using the CEI property:

E
"
f .U/F."UX/ 1fXı"U2Ig

#
D
Z 1

0

f .u/E
"
F."uX/ 1fXı"u2Ig

#
du

D E
"
F1fX2Ig

# Z 1

0

f .u/ du:

Additionally, we conclude that the random variable U is uniform on .0; 1/ and
independent of X ı "U conditionally on X ı "U 2 I.

Write U in the following way:

U D inf
$
t W AI

t D
AI
U

AI
1

AI
1

%
: (2.3)

Then it suffices to prove that conditionally on X ı "U 2 I, the random variable
AI
U=A

I
1 is uniformly distributed over [0,1] and independent of X. Indeed from the

conditional independence and (2.3), we deduce that conditionally on X ı "U 2 I, the
law of ."U.X/;U/ is the same as that of ."#.X/ ; #/.

Let F be any positive, measurable functional defined on D and f be any positive
Borel function. From the change of variable s D AI

t=A
I
1, we obtain

E
"
F.X/f .AI

U=A
I
1/1fIg.X ı "U/

#

D E
&Z 1

0

f .AI
t=A

I
1/F.X/1fIg.X ı "t/ dt

'

D E
&Z 1

0

f .AI
t=A

I
1/F.X/ dA

I
t

'

D E
"
F.X/AI

1

# Z 1

0

f .t/ dt ;

which proves the conditional independence mentioned above.
The converse assertion is immediate using the independence of "#X and # and

the fact that the latter is uniform. ut
We will now apply Sect. 2 to particular situations to get diverse generalizations

of Theorem 2.2.
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3 Exchangeable Increment Processes and the Vervaat
Transformation

In Sect. 2 we shifted paths at random using "& to condition a given CEI process to
have a minimum in a given interval I. When I D .!"; 0! and X1 D 0, and under
a simple technical condition, we now see that the limiting transformation of "& as
"! 0 is the Vervaat transformation. Hence, we obtain an extension of Theorem 1.1.

Corollary 3.1 Let .X;P/ be any non trivial CEI process such that X0 D 0 D X1.
Assume that there exists a unique $ 2 .0; 1/ such that X$ D X and that X$" D X$.
Then:

1. The law of X conditioned to remain above !" converges weakly in the Skorohod
J1 topology as "! 0. Furthermore, the weak limit is the law of "$X.

2. Conversely, let Y be a process with the same law as "$X and let U be uniform
on .0; 1/ and independent of Y. Then the process "UY has the same law as X. In
particular, $ is uniformly distributed on .0; 1/.

Note that we assume that the infimum of the process X is achieved at $. Actually
if the infimum is only achieved as a limit (from the left) at $ and X$" < X$ then
the transformation "# converges, as "! 0 pointwise to a process "$ which satisfies
"$.0/ D 0, "$.0C/ D X$ ! X$". Hence, convergence cannot take place in the
Skorohod space. A similar fact happens when X$" > X$. After the proof, we shall
examine an example of applicability of Corollary 3.1 to exchangeable increment
processes.

Proof We use the notation of Theorem 2.2. Recall the definition of #, given in
Eq. (2.2) of Theorem 2.2. Intuitively, # D #."/ is a uniform point on the set

ft W Xt ! Xt < "g :

The uniqueness of the minimum implies that # ! $ as "! 0. Since X is continuous
at $, by assumption, for any ' > 0 we can find ı > 0 such that

ˇ̌
X$ ! Xs

ˇ̌
< ' if

s 2 Œ$ ! ı; $C ı!. On Œ0; $ ! ı! and Œ$C ı; 1!, we use the càdlàg character of X to
construct partitions 0 D t10 < % % % < t1n1 D $ ! ı and $ C ı D t20 < % % % < t2n2 D 1
such that

jXs ! Xtj < ' if s; t 2 Œtij"1; tij/ for j " ni:

We use these partitions to construct the piecewise linear increasing homeomorphism
( W Œ0; 1!! Œ0; 1! which satisfies k"# ı ( ! "$kŒ0;1! " ' . Indeed, construct ( which
scales the interval Œ0; t21 ! #! to Œ0; t21 ! $!, shifts every interval Œt2i"1 ! #; t2i ! #! to
Œt2i"1!$; t2i !$! for i " n2, also shifts Œ1!#Ct1i"1; 1!#Ct1i ! to Œ1!$Ct1i"1; 1!$Ct1i !,
and finally scales Œ1!#C.$!ı/; 1! to Œ1!ı; 1!. Note that by choosing # close enough
to $, which amounts to choosing " small enough, we can make k( ! Id kŒ0;1! " ' .
Hence, "# ! "$ in the Skorohod J1 topology as "! 0.
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Also, from Theorem 2.2, we know that # is uniform on .0; 1/ and independent
of "#X. Taking weak limits, we deduce that $ is uniform and independent of "$X,
which finishes the proof. ut

Our main example of the applicability of Corollary 3.1 is to exchangeable
increment processes.

Definition 3.2 A càdlàg stochastic process has exchangeable increments (EI) if
its law satisfies that for every n $ 1, the random variables

Xk=n ! X.k"1/=n; 1 " k " n

are exchangeable.

Note that an EI process is also a CEI process.
According to [14], an EI process has the following canonical representation:

Xt D ˛t C %bt C
X

i

ˇi
(
1fUi!tg ! t

)

where

1. ˛, % and ˇi; i $ 1 are (possibly dependent) random variables such that
P

i ˇ
2
i <

1 almost surely.
2. b is a Brownian bridge
3. .Ui; i $ 1/ are iid uniform random variables on .0; 1/.

Furthermore, the three groups of random variables are independent and the sum
defining Xt converges uniformly in L2 in the sense that

lim
m!1

sup
n#m

E
 
sup
t2Œ0;1!

"
nX

iDmC1
ˇ2i
(
1fUi!tg ! t

)2
#!

D 0:

The above representation is called the canonical representation of X and the triple
.˛; ˇ; %/ are its canonical parameters.

Our main example follows from the following result:

Proposition 3.3 Let X be an EI process with canonical parameters .˛; ˇ; %/. On
the set

(
X

i

ˇ2i jlog jˇijj c <1 for some c > 1 or % ¤ 0

)
;

X reaches its minimum continuously at a unique $ 2 .0; 1/.
We need some preliminaries to prove Proposition 3.3. First, a criterion to decide

whether X has infinite or finite variation in the case there is no Brownian component.
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Proposition 3.4 Let X be an EI process with canonical parameters .˛; ˇ; 0/. Then,
the sets

fX has infinite variation on any subinterval of Œ0; 1!g

and
(
X

i

jˇij D 1
)

coincide almost surely. If
P

i jˇij <1 then Xt=t has a limit as t ! 0.

It is known that for finite-variation Lévy processes, Xt=t converges to the drift of X
as t ! 0 as shown in [26].

Proof We work conditionally on ˛ and .ˇi/; assume then that the canonical
parameters are deterministic. If

P
i jˇij < 1, we can define the following two

increasing processes

Xp
t D ˛CtC

X

iWˇi>0
ˇi1fUi!tg and Xn

t D ˛"tC
X

iWˇi<0
!ˇi1fUi!tg

and note that X D Xp ! Xn. Hence X has bounded variation on Œ0; 1! almost surely.
On the other hand, if

P
i jˇij D 1 we first assert that the set

Ak;n D
(
X

i

jˇij 1fk=n!Ui!.kC1/=ng D 1
)

has probability 1 for any n $ 1 and any k 2 f0; : : : ; ng. Note that for fixed n,
[0!k!n"1Ak;n D ). Also, P.Ak1;n/ D P.Ak2;n/ since the Ui are uniform. Finally,
note that Ak;n belongs to the tail %-field of the sequence of random variables .Ui/.
Hence, P.Ak1;n/ D 1 by the Kolmogorov 0-1 law. Since

X

i

jˇij 1fa!Ui!bg D
X

tW*Xt¤0
j*Xtj 1fa!t!bg

and the sum of jumps of a càdlàg function is a lower bound for the variation, we see
that X has infinite variation on any subinterval of Œ0; 1!.

Recall that Xt 2 L2 (since we assumed that the canonical parameters are
constant). Using the EI property, it is easy to see that

E.Xs jXt; t $ s/ D s
t
Xt:

loic.chaumont@univ-angers.fr
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Hence the processM D .Mt; t 2 Œ0; 1// given byMt D X1"t=.1! t/ is a martingale.
If
P

i jˇij <1 then

Xt D ˛tC
X

i

ˇi1fUi!tg ! t
X

i

ˇi

so that E.jMtj/ " j˛j C 2
P

i jˇij . Hence, M is bounded in L1 as t ! 1 and so it
converges almost surely. ut

Secondly, we give a version of a result originally found in [23] for Lévy
processes.

Proposition 3.5 The set

(
X

i

jˇij D 1;
X

i

ˇ2i jlog jˇijj c <1 for some c > 1 or % ¤ 0

)

is almost surely contained in

$
lim sup
t!1

Xt

t
D 1 and lim inf

t!1
Xt

t
D !1

%
:

Proof By conditioning on the canonical parameters, we will assume they are
constant.

If % ¤ 0, let f W Œ0; 1! ! R be a function such that
p
t D o.f .t// and

f .t/ D o
*
.t log log1=t/1=2

+
as t ! 0. Then, since the law of the Brownian bridge

is equivalent to the law of B on any interval Œ0; t! for t < 1, the law of the iterated
logarithm implies that lim supt!0 bt=f .t/ D 1 and lim inft!0 bt=f .t/ D !1. On
the other hand, if Y D X ! %b, then Y is an EI process with canonical parameters
.˛; ˇ; 0/ independent of b. Note that E

"
Y2t
#

& t
P

i ˇ
2
i as t ! 0 to see that

Yt=f .t/ ! 0 in L2 as t ! 0. If tn is a (random and b-measurable) sequence
decreasing to zero such that btn=f .tn/ goes to 1, we can use the independence of
Y and b to construct a subsequence sn converging to zero such that bsn=f .sn/ ! 1
and Ysn=f .sn/ ! 0. We conclude that Xtn=tn ! 1 and so lim supt!0 Xt=t D 1.
The same argument applies for the lower limit.

Let us now assume that % D 0. If
P

i jˇij D 1 then X necessarily has infinite
variation on any subinterval of Œ0; 1!. If furthermore

P
i ˇ

2
i jlog jˇijj c < 1 then

Theorem 1.1 of [15] allows us to write X as Y C Z where Z is of finite variation
process with exchangeable increments and Y is a Lévy process. Since Y has infinite
variation, then lim inft!0 Yt=t D !1 and lim supt!0 Yt=t D 1 thanks to [23].
Finally, since limt!0 Zt=t exists in R by Proposition 3.4 since Z is a finite variation
EI process, then lim inft!0 Xt=t D !1 and lim supt!0 Xt=t D 1. ut
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110 L. Chaumont and G. Uribe Bravo

Proof of Proposition 3.3 Since lim inft!0C Xt=t D !1, we see that $ > 0. Using
the exchangeability of the increments, we conclude from Proposition 3.5 that at
any deterministic t $ 0 we have that lim suph!0C.XtCh ! Xt/=h D 1 and
lim infh!0C.XtCh !Xt/=h D !1 almost surely. If we write Xt D ˇi

(
1fUi!tg ! t

)
C

X0t and use the independence between Ui and X0, we conclude that at any jump time
Ui we have: lim suph!0C.XUiCh ! XUi/=h D 1 and lim infh!0C.XUiCh ! Xt/=h D
!1 almost surely. We conclude from this that X cannot jump into its minimum. By
applying the preceeding argument to

"
X1 ! X.1"t/"; t 2 Œ0; 1!

#
, which is also EI with

the same canonical parameters, we see that $ < 1 and that X cannot jump into its
minimum either. ut

In contrast to the case of EI processes where we have only stated sufficient
conditions for the achievement of the minimum, necessary and sufficient conditions
are known for Lévy processes. Indeed, Theorem 3.1 of [20] tells us that if X is a Lévy
process such that neither X nor !X is a subordinator, then X achieves its minimum
continuously if and only if 0 is regular for .0;1/ and .!1; 0/. This happens always
when X has infinite variation. In the finite-variation case, regularity of 0 for .0;1/
can be established through Rogozin’s criterion: 0 is regular for .!1; 0/ if and only
if
R
0C P.Xt < 0/ =t dt D 1. A criterion in terms of the characteristic triple of the

Lévy process is available in [1]. We will therefore assume

H1: 0 is regular for .!1; 0/ and .0;1/.

We now proceed then to give a statement of a Vervaat type transformation for
Lévy processes, although actually we will use their bridges in order to force them
to end at zero. Lévy bridges were first constructed in [16] (using the convergence
criteria for processes with exchangeable increments of [14]) and then in [8] (via
Markovian considerations) under the following hypothesis:

H2: For any t > 0,
R ˇ̌

E
"
eiuXt

#ˇ̌
du <1.

Under H2, the law of Xt is absolutely continuous with a continuous and bounded
density ft. Hence, X admits transition densities pt given by pt.x; y/ D ft.y ! x/. If
we additionally assume H1 then the transition densities are everywhere positive as
shown in [25].

Definition 3.6 The Lévy bridge from 0 to 0 of length 1 is the càdlàg process whose
law P10;0 is determined by the local absolute continuity relationship: for every A 2
Fs

P10;0.A/ D E
&
1fAg

p1"s.Xs; 0/

pt.0; 0/

'
:

See [13, 16] or [8] for an interpretation of the above law as that of X conditioned on
Xt D 0. Using time reversibility for Lévy processes, it is easy to see that the image
of P10;0 under the time reversal map

"
X.1"t/"; t 2 Œ0; 1!

#
is the bridge of !X from 0

to 0 of length 1 and that X1 D X1" D 0 under P10;0.
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Proposition 3.7 Under hypotheses H1 and H2, the law P10;0 has the EI property.
Under P10;0, the minimum is achieved at a unique place $ 2 .0; 1/ and X is
continuous at $.

We conclude that Corollary 3.1 applies under P10;0. At this level of generality, this
has been proved in [27]. In that work, the distribution of the image of P10;0 under the
Vervaat transformation was identified with the (Markovian) bridge associated to the
Lévy process conditioned to stay positive which was constructed there.

Under our hypotheses, the bridges of a Lévy process have exchangeable incre-
ments. Therefore it is natural to ask if Proposition 3.7 is not a particular case of
Proposition 3.3. We did not address this particular point since under H1 and H2,
which are useful to construct weakly continuous versions of bridges, the minimum
is attained at a unique place and continuously, as we now show.

Proof of Proposition 3.7 Using the local absolute continuity relationship and the
regularity hypothesisH1 we see that X < 0 under P10;0. Let ı 2 .0; 1/. On Œı; 1! ı!,
the laws P10;0 and P are equivalent. Since the minimum of X on Œı; 1! ı! is achieved
at a unique place and continuously (because of regularity) under P, the same holds
under P10;0. We now let ı ! 0 and use the fact that X < 0 under P10;1 to conclude.

ut

4 Conditioning a Brownian Bridge on Its Minimum

In Corollary 3.1 we considered a limiting case of Theorem 2.2 by conditioning the
minimum of a Brownian bridge to equal zero rather than to be close to zero when
X1 D 0. In this section, we will show that the limiting procedure is also valid when
X1 > 0 and for any value of the minimum. This will enable us to establish, in
particular, a pathwise construction of the Brownian meander.

Theorem 4.1 Let Px be the law of the Brownian bridge from 0 to x $ 0 of length 1.
Consider the reflected process R D X ! J where

Jt D inf
s2Œt;1!

Xs _
(
Xt C X1

)
:

Then R admits a bicontinuous family of local times
"
Lyt ; t 2 Œ0; 1!; y $ 0

#
. Let y $ 0

be fixed and U be a uniform random variable independent of X and define

# D inf
˚
t $ 0 W Lyt D ULy1

!
:

Let Py;x be the law of "#.X/ conditionally on Ly1 > 0. Then Py;x is a version of the
law of X given X D y under Px which is weakly continuous as a function of y.

loic.chaumont@univ-angers.fr



112 L. Chaumont and G. Uribe Bravo

Conversely, if x D 0 and Y has law Py;0, U is a uniform random variable
independent of Y, and H D X ! X is the amplitude of the path X, then "U.Y/
has the law of X conditionally on H $ !y.

The process R is introduced in the preceding theorem for a very simple reason: when
X1 $ 0, it is equal to !X ı "t. See Fig. 2 for an illustration of its definition.
Proof of Theorem 4.1 To construct the local times, we first divide the trajectory of
X in three parts. Let $ be the unique instant at which the minimum is achieved
and let X be the minimum. Using Denisov’s decomposition of the Brownian bridge
of [10], we can see that conditionally on $ D t and X D y, the processes
X D .Xt"s ! y; s " t/ and X! D .XtCs ! y; s " 1 ! t/ are three-dimensional
Bessel bridges starting at 0, of lengths t and 1! t, and ending at y and yCx (see also
Theorem 3 in [27], where the preceding result is stated for x D 0 for more general
Lévy processes). Next, the trajectory of X! will be further decomposed at

ƒx D sup fr " 1 ! t W X!r " xg :

The backward strongMarkov property (Theorem 2 in [8]) tells us that, conditionally
on ƒx D s, the process X!;1 D

"
X!r ; r " s

#
is a three-dimensional Bessel bridge

from 0 to x of length s. Finally, the process X!;2 given by X!;2r D X!sCr ! x for
r " 1!t!s is a three-dimensional Bessel bridge from 0 to y of length 1!t!s. Now,
note that under the law of the three-dimensional Bessel process, one can construct
a bicontinuous family of local times given as occupation densities. That is, if P30 is
the law of the three-dimensional Bessel process, there exists a bicontinuous process"
Lyt ; t; y $ 0

#
such that:

Lyt D lim
"!0

1

"

Z t

0

1fjXs"yj!"g ds

for any t; y almost surely. By Pitman’s path transformation between P30 and the
reflected Brownian motion found in [21], note that if X!t D infs#t Xs is the future
infimum process of X, then X ! X! is a reflected Brownian motion for which one
can also construct a bicontinuous family of local times. Therefore, the following
limits exist and are continuous in t and y:

Lr;yt D lim
"!0

Z t

0

1fjXr"X!rj!"g dr:

Since the laws of the Bessel bridges are locally absolutely continuouswith respect to
the law of Bessel processes, we see that the following limits exist and are continuous
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X1

X1 − X

X

J

R = X − J

Fig. 2 Illustration of the reflected process R, given by "X ı "t when X1 # 0
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as functions of t and z under Px:

Lzr.R/

D lim
"!0

1

"

Z

Œ0;r!
1fjRu"zj!"g du

D lim
"!0

1

"

,Z

Œ0;r!
1fjXu"y"zj!"g1fu2Œ0;t![ŒtCs;1!g du

C
Z

Œ0;r!
1fjXu"X!;u"y"zj!"g1fu2Œt;tCs!g du

-
:

(The bridge laws are not absolutely continuous with respect to the original law near
the endpoint, but one can then argue by time-reversal.)

Note that R is cyclically exchangeable, so that the set Ly1 > 0 is invariant under
"t for any t 2 Œ0; 1!. Hence, X conditioned on Ly1 > 0 is cyclically exchangeable.
Hence, by conditioning, we can assume that Ly1 > 0.

Define I D .y ! "; yC "/ and let

&I D inf
˚
t $ 0 W AI

t D UAI
1

!
:

Note that the process Ly is strictly increasing at #. Indeed, this happens because U
is independent of Ly and therefore is different, almost surely, from any of the values
achieved by Ly=Ly1 on any of its denumerable intervals of constancy. (The fact that
Ly1 > 0 is used implicitly here.) Since AI converges to Ly, it then follows that &I

converges to #. Using the fact thatX is continuous, it follows that "#IX ! "#X. Since
Ly1 > 0, then lim"!0 Px

"
AI
1 > 0

#
D 1. However, by Theorem 2.2, conditionally on

AI
1 > 0, "&I X has the law of X conditioned on X 2 I. Hence, the latter conditional

law converges, as "! 0 to the law of "#X. A similar argument applies to show that #
is continuous as a function of y and hence that the law Py;x is weakly continuous as a
function of y. But now, it is a simple exercise to show that .Py;x; y $ 0/ disintegrates
Px with respect to X.

Finally, suppose that x D 0. Since &I is independent ofX, then # is independent of
X also. Hence, the law of "U under Py;x equals Px conditioned on L

y
1 > 0. However,

note that L1y > 0 implies that R (which equals X ! X when x D 0) reaches level y.
Conversely, if R reaches level y, then the local time at y must be positive. Hence the
sets

˚
Ly1 > 0

!
and fH $ yg coincide. ut

One could think of a more general result along the lines of Theorem 4.1 for
processes with exchangeable increments. As our proof shows, it would involve
technicalities regarding local times of discontinuous processes. We leave this
direction of research open.

As a corollary (up to a time-reversal), we obtain the path transformation stated
as Theorem 7 in [3].
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Corollary 4.2 Let P be the law of a Brownian bridge from 0 to x $ 0 of length 1
and let U be uniform and independent of X. Let # D supft " 1 W Xt " X C xUg.
Then "#X has the same law as the three-dimensional Bessel bridge from 0 to x of
length 1.

Proof We need only to note that, under the law of the three-dimensional Bessel
process, the local time of X ! X! equals X! (which can be thought of as a
consequence of Pitman’s construction of the three-dimensional Bessel process).
Then, the local time at zero of R equals J C X, its final value is x C X, and then
# D inf

˚
t $ 0 W L0t > UL01

!
. ut

By integrating with respect to x in the preceding corollary, we obtain a path
construction of the Brownian meander in terms of Brownian motion. Indeed,
consider first a Brownian motion B and define X D B sgn.B1/. Then X has the law of
B conditionally on B1 > 0 and it is cyclically exchangeable. Applying Theorem 4.1
to X, we deduce that if # D supft " 1 W Xt " XC xUg then X ı "# has the law of the
weak limit as "! 0 of B conditioned on inft!1 Bt $ !", a process which is known
as the Brownian meander.

Setting x D 0 in Theorem 4.1 gives us a novel path transformation to condition a
Brownian bridge on achieving a minimum equal to y. In this case, we consider the
local time process. This generalizes the Vervaat transformation, to which it reduces
when y D 0.

Corollary 4.3 Let P be the law of the Brownian bridge from 0 to 0 of length 1, let"
Lyt ; y 2 R; t 2 Œ0; 1!

#
be its continuous family of local times and let U be uniform

and independent of X. For y " 0, let

&y D inf
n
t $ 0 W LX"yt > ULX"y1

o
:

Then the laws of Xı"&y provide a weakly continuous disintegration of P given X D y.

The only difference with Theorem 4.1 is that the local times are defined directly
in terms of the Brownian bridge since the reflected process R equals X!X when the
ending point is zero. The equality between both notions follows from bicontinuity
and the fact that local times were constructed as limits of occupation times. Also,
note that since the minimum is achieved in a unique place $ 2 .0; 1/, then LX1 D 0.
Hence &y ! $ as y ! 0 and the preceding path transformation converges to the
Vervaat transformation.

Theorem 4.1 may be expressed in terms of the non conditioned process, that is,
instead of considering the Bessel bridge, one may state the above transformation for
the three dimensional Bessel process itself. More precisely, since path by path

"u.Xt ! xt ; 0 " t " 1/ D ."uf .X/t ! xt ; 0 " t " 1/ ;
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and since the Brownian bridge b from 0 to x can be represented as

bt D Xt ! t.X1 ! x/; 0 " t " 1/ ; (4.1)

under the law of Brownian motion, then the process .bt ! xt ; 0 " 1/ is a Brownian
bridge from 0 to 0 and then so is ."u.X/t ! xt ; 0 " t " 1/ under the law of the three
dimensional Bessel bridge from 0 to x of length 1. In particular, the law of the latter
process does not depend on x and we can state:

Corollary 4.4 Under the law of the three-dimensional Bessel process on Œ0; 1!, if
U is uniform and independent of X, then ."U.X/t ! tX1; 0 " t " 1/ is a Brownian
bridge (from 0 to 0 of length 1) which is independent of X1.

Let us end by noting the following consequence of Theorem 4.1: if P is the law
of the Brownian bridge from 0 to 0, then the law of X ! y given X D y equals the
law of A given A $ y. When y D 0, we conclude that the law of the maximum of a
normalized Brownian excursion equals the law of the range of a Brownian bridge.
This equality was first proved in [9] and [17]. Providing a probabilistic explanation
was the original motivation of Vervaat when proposing the path transformation "$
in [28].
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